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I N  T R O D  U C  T I O N  

The problem of reconstructing a signal x ( t )  f rom a se t  of sampled values 

{x(t )}  

and control. The type of sampling where t - t = T = constant, for all n, is 

known a s  periodic sampling and this special case  has received considerable 

attention. However, the case  of periodic sampling is idealized and is, in practice, 

extremely difficult ta  obtain, a s  imperfections in the sampling mechanism wil l  

always give some uncertainty about the exact location of each sampling instant 

t . 
n 

a random e r r o r  in timing. 

instants t 

random sampling. 

the optimum recovery scheme of x(t)  and i t s  effects must be studied. Similarly, 

random sampling occurs in sampled-data systems because of inaccuracies in the 

equipment which is designed to  sample at  constant intervals.  

a lso can occur in a multi-loop system because of a random time delay which 

must  elapse before a digital computer again becomes available to ca r ry  out 

[the t denote the sampling instants] is of interest  in both communications n n 

n + l  n 

I 1  This uncertainty is usually known a s  time-jitter" and is often described a s  

In other words, the exact location of the sampling 

is uncertain o r  random, and the presumed periodic sampling becomes a n 
It is c lear  that the t ime-ji t ter  e r r o r  wi l l  affect the design of 

Random sampling 

control computations required by a particular feedback loop of the system. 

in radar  problems [with nominal scanning period T 1 ,  i t  happens occasionally 

that some samples  of the re turn  signals a r e  absent or rejected due to  excessive 

noise or  other interference; this is re fe r red  to a s  the mis s  [or skip] problem 

in r ada r .  

be described probabilistically. 

Also, 

Thus the availability of data at  the nominal sampling instants may only 

Furthermore,  there a lso exists the possibility of intentional random sampling. 

For instance, it  may be convenient to  have a random scheme of sampling in 

o rde r  to reduce the susceptability of some sys tems to jamming or s imilar  inter-  

ference.  Also, i t  could be suggested that, for reasons of economy, a t ime-shared 

digital computer, used for the control of a number of plant processes,  may be 



made available to any particular process  a t  random, ra ther  than at  specified 

instants of time. 

is of practical  interest  in determining the power spectra  + (a) of a weakly 

stationary random process  x ( t )  from a set  of samples  ( ~ ( t  )} ~ 

that the determination is unamgibuous if  the spec t ra  is band-limited and the 

sampling is periodic with a frequency grea te r  than the Nyquist frequency. 

if the spectra  is not band-limited or it is not cer ta in  whether it is, then there  

exists a whole class of power spectra  [known a s  

compatible with the periodic sample values. Shapiro and Silverman have shown 

however that some random sampling schemes e.  g. Poisson sampling will 

eliminate the aliases and hence allow an unambiguous recovery of the spectra  

Moreover, it can be shown (ref S.2.  ) that random sampling 

X 

It is well-known n 

But 

1 '  aliases" of +,(w)] which a r e  

The effect of random sampling in association to  problems of interpolation 

and of sampled-data sys tems has been partially investigated, leading to  a 

cer ta in  number of resul ts .  Kalman (ref K .  1. ) was concerned with the stability 

of a f i r s t -order  sampled-data system in which the sampler  operates a t  random 

t imes [ and assuming that the time intervals a r e  independent random var iab les ] .  

This synthesis procedure is based on the technique of dynamic programming. 

Bergen [ref B. 4, B. 51 has studied the s ta t is t ics  of the output of a l inear t ime- 

invariant system which is preceded by a sampler  switching at  random instants 

of t ime [with the t ime intervals being independent random variables].  His 

synthesis procedure for optimum designs is based on the minimum mean square 

e r r o r  cr i ter ion.  

non-realizable interpolation of band- limited signals when time- j i t ter  e r r o r  is 

present  during periodic sampling. 

preceding problem by considering non-band limited signals and two sources  of 

t ime-ji t ter  e r r o r s  ["read-in" j i t ter  and ' 'read-out" j i t ter] .  Adomian ( r e f  A .  1. ) ,  

using the periodogram method, calculated the spec t ra l  density of the output of a 

zero-order  hold preceded by a sampler  which operates  a t  random instants of 

C 
\ 

Balakrishnan (ref B.2 .  ) investigated the problem of optimum 

Brown (ref B. 9 ) generalized slightly the 

. 

v i  



t ime [the t ime intervals being independent random variables]. 

In the present work, among the other things, we have attempted to  extend 

Using the minimum mean square some of the studies of the preceding authors. 

e r r o r  cri terion, we investigate the problem of optimum line a r  interpolation 

[ non-realizable solutions] of a signal from samples  taken a t  random instants of 

t ime [ e .  g. nearly-periodic sampling with skips, Poisson sampling, etc.  . . . 1, 
with e r r o r s  in amplitude also present The preceding study is quite simply 

performed with the use of an 'Iimproper" random process,  the random impulse 

n n process  defined a s  s ( t )  = E (Y d( t  - t ) where the random sampling instants t n=-w n 
constitute a so-called stationary point process  [section 1. 2 .  ] which is independent 

of the stationary random process  {cy- } . Moreover, some of the statist ical  
I1 00 

character is t ics  of ' 'secondary processes" y ( t )  defined a s  y ( t )  n=-CQ =E cynq(t, t n ) ,  

. 
where T(t, u )  denotes a deterministic function, a r e  considered and studied. 

A s  a result ,  Campbell 's  theorem is  easily obtained. Furthermore,  a whole 

variety of step-wise random processes a r e  introduced and their  second-order 

s ta t is t ics  a r e  investigated either in the time-domain o r  in the frequency domain. 

In particular, we consider the statist ics of the output of a zero-order  hold 

[ in a sampled-data system] preceded by a sampler  which switches at  random 

instants of time; the resu l t s  obtained may be useful for  the statist ical  design 

of optimum random sampled- data systems.  

In o rde r  to c a r r y  on the preceding studies, it w a s  necessary to define a 

statist ical  representation of random points on the line, to introduce the concept 

of a stationary point process  and to study i t s  properties.  This concept has  been 

inspired by the work of McFadden [ref M. l . ,  M. 2.1, who used a somewhat 

different approach from that used here.  

Many examples a r e  given. 

vii 



C H A P T E R  I 

Stationary Point P roc  e s s e s 

Summary 

This chapter introduces the concept of point processes  and defines 

Some general propert ies  are in- the class of stationary point processes .  

vestigated and particular attention is devoted to the statist ical  behavior of 

the random number of points ( o r  occurrences) which fall in a given t ime in- 

terval .  A few methods for  generating point processes  which are stationary 

a r e  indicated and various examples a r e  given. 

1.1 Recurrence Datterns and Doint Drocesses 

1.1.1 Definitions 

In what follows, we attempt to describe statistically the random in- 

stants of occurence of an enumerable sequence of specific events ( e . g . ,  elec- 

t rons emitted in a vacuum tube, or  customers  entering a s tore) .  

The a r r iva l  pattern: forward point process  

Suppose we choose a fixed instant t and then, without any knowledge of 

the sequence of events, inquire about the random time of occurence of the first 

event after t .  

instants of events in sequence where 

We may denote that instant by t l  and by t2 ,  t 3 . .  the successive 

t 5 t l  S t 2 " " " t  (1.1.1) n 

for  all n .  

a forward point process .  

By definition, the set  of random instants {t will be called n n=1, 2 

A t  this point, it is of interest to mention that the ordering of events 

according to (1.1.1) is not always possible. 

of events occurring at  all rational instants of time: 

but they can not be ordered according to (1.1.1) 

s i rab le  and, f rom now on, we shall only consider occurrences satisfying the 

For  example, consider the case 

those events are  countable 

Such a situation will be unde- 

- 1 -  
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ordering equation (1.1.1) 

Next, we introduce the random intervals 

L,(t) = tn - t (1.1. 2) 

(1-1- 3 )  

where L l ( t )  is known as the first passage time and where x (t) is often called 

the inter-arr ival  time between consecutive events (ref T. 2 ) .  With these nota- 

tions, eqn. (1.1.1) gives 

n 

0 5 L,(t) 5 L2(t) 5 * L ( t )  (1.1.4) 
n 

and it is c lear  that the a r r iva l  pattern of events ( o r  

tally described by the random process  { Ln(t)} n=i,  2 ,  D .  a 

Such a random process  is constantly used in the study of queueing and 

renewal theory ( re f  F. 1, C ,  1, T. 2, P. 2 ) .  

where L1 ( t ) ,  X1 (t) ,  . . x (t) a r e  positive, mutually independent random variables n 
such that all the x ( t )  a r e  identically distributed. 

The departure pattern: backward point process  

The most  frequent case  is the one 

n 

In a similar way, in order  to describe the departure pattern of this se- 

quence of events, we also introduce the concept of a backward point process .  

This process  is defined by the instants {t 1 where t denotes the 

instant of occurrence of the most recent event before the instant t, and where 

t , t : . t  a r e  the backward successive instants 

-n n = i ,  2 . .  . -1 

- 2  - 3  -n 

t 5 . . .  s t  i t  i t  ~ 

-n - 2  -1 

Let 

L ( t ) = t - t  -n -n 

and 

(1.1. 5) 

(1 .1 .6)  

(1 .1 .7)  
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Then the departure pattern of events is statistically described by the random 

process  {L (t)} -n n = i ,  2 , .  ~ 

The complete recurrence pattern: point process  

Finally, there  a r e  situations when one inquires jointly about backward 

and forward occurrences.  In this case, by using the previous notations, we 

a r e  led to the point process  {t } 
process  { Ln(t)} 

which is described by the random n n=+i,  2 2  e 

n=+1,+2, - .  - 
Symmetric point process  

and {L (t)} a r e  -n n = i ,  t ,  . . . If the random processes  {L (t)} n n = i , 2 ,  . . .  
statist ically identical, we say that the point process  {tnln,+l , + 2  , . ~ ~ is sym- 

metric for the instant t .  

1 . 1 . 2  The number of occurrences in a given t ime interval 

F o r  simplicity, we  shall only consider forward occurrences,  the exten- 

sion to  backward occurrences being s imi la r .  We shall consistently use the ab- 

ridged notation 

{L (t) 5 T I  n 

S2 being the basic probability space. 

respectively for  probability and expectation. 

A s  usual, the letters P and E will stand 

We denote by G ( T) the distribution function associated with the random n t  
var iable  L (t), that is n 

(1. 1. 8) 

Because of (1.1. 4), we have 
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T < 0 G n ( ~ ) t  = 0, 

G n+l ( T ) t  5 G n ( ~ ) t  

n = 1 , 2 ,  . . .  

Let N(t + x, T) be the random number of events which occur in the interval 

Similarly, we find 

P(OJ T)t+X = PILl ( t )  > T + X I  

n 1 1. 

(1. 1. 9) 

(1. 1. 10) 

t) > T + X ) ]  

(1. 1. 11) 

(1. 1.12) 

(1. 1. 13) 

(1. 1. 14) 

(1. 1. 15) 

(1. 1.16) 

(1. 1. 17) 

. 
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1.1. 3 Conclusions: Example 

A comparison of (I. 1.16) with (1.1.18) shows that, in general, the ran-  

This re- dom variables N(t, T) and N ( t  + x, T) a r e  not identically distributed. 

sult is obviously expected in many practical  situations: 

a r r iva l  pattern of customers  entering a s tore  may vary considerably at dif- 

fe ren t  hours of the day. But, on the other hand, there  are many physical 

situations in which one feels that the probability s t ruc ture  of the recurrence 

pattern for  a certain type of event does not vary with time; fo r  instance, this 

may be the case when one studies the emission pattern of electrons in a vacu- 

um tube, assuming that the tube is in steady-state operation. 

it is useful to define a concept of stationarity for  point processes ,  and we shall  

do so in the next section. 

fo r  example, the 

Consequently, 

Another point of concern is the following one: in many physical si tua- 

tions, one would l ike to think of N( t  + x, T) as a finite-valued random variable 

so that 00 

(1. 1.19) 

But this condition need not always hold. 

point process  defined as 

For  example, consider the forward 

(1. 1. 20) 

where a is a random variable uniformly distributed between zero and one. 

F r o m  
1 
n Ln(t) = tn - t = cy + 1 - - , n = 1, 2 , .  . . 

we obtain 

1 1 1 
G n ( ~ ) t  =(. - (1 - -) , 1 - - <  T 5 2 - - n n n 

(1. 1. 21) 

(1.1. 22) 

, 
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Equations (1. 1. 15) , (1. 1. 16) give 

p(n, 3)t  = 0 , n = O,l, 2 , .  . . (1. 1. 23) 

ix, 
s o  that 

p(n, 3)t  = 0 (1. 1. 24) 
n=O 

thus showing that N(t, 3 )  is not finite-valued, as could be expected by noting 

that the interval (t, t + 31 contains a limit point. 

1. 2 Stationary point process  -_ 

1. 2. 1 Definitions 

The point process described by {Ln(t)},,+ 
+ 2  , 

if the joint distribution function of the random variables 

is called stationary 
- > -  0 . 0  

{Lnl ( t  + h), L ( t  + h), . . .,L ( t  + h)} 
n2 "k 

is identical with the joint distribution function of the random variables 

f o r  all rea l  values of h and all nk E {kl, + 2 ,  . . . } 

In a s imilar  way one may define stationarity for the forward point p ro -  

and the backward point process  { L (t)} c e s s  {Ln(t)} n= i  , 2 , .  . . -n n=1,2 , .  . . 
1. 2. 2 Fundamental theorem: 

A point process is stationary i f ,  and only i f ,  the associated forward (o r  

backward) point process is stationary. 

Proof: 

n) The necessary par t  is obvious. 

s) We have to show that the knowledge of the stationary forward pro-  

determines that of the process  { L (t)} n=1,2, .  . . n n = + i , + t J . .  . c e s s  { Ln( t)} 

F i rs t ,  let u s  determine the distribution function associated with L-,(t). 
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Lett ine 
v 

a t  least  n occurrences 

in the interval ( t ,  t + T] 
0 En(t, T) = 

and observing that 

En ( t  - T, T) = { L  ( t )  5 T> -n 

(1. 2. 1) 

(1. 2. 2 )  

we obtain 
P[L (t) 5 T I  = P[L (t - T )  5 T ]  (1. 2. 4) -n n 

The forward point process  is stationary so  that L ( t  - T) does not depend on 

i t s  argument (whenever there  is no ambiguity, we shall write L instead of 

Ln(t - 3. Defining 

n 

n 

Gn(T) = P[L 5 T]  (1. 2. 5) n 

we obtain 
P [L  (t) 5 T] = G,(T) -n (1. 2. 6 )  

so that the distribution of L 

s a m e  a s  that of Ln. 

Next, we consider higher order  distribution functions. 

(t) does not depend on i t s  argument and is the -n 

It will be suf- 

ficient to  consider an example. For instance 

This theorem can be intuitively expected f rom the following argument: 

For  t = - 0 0 ,  the entire point process appears  a s  a forward point process  and 



- 8 -  
. 

since { L (t)} does not depend on t, one may choose t = - 00.  n n=i,2, - . .  

Notice that although Ln and L a r e  identically distributed, equation 
-n _ _  

(1. 2. 7) shows that, in general, the processes  {L } and {L } n n=i,  2 , .  . -n n=1,2,. . . 
a r e  not statistically identical, so  that a stationary point process  is not neces-  

sa r i ly  symmetr ic .  

1. 2. 3 Discussion 

We would like to show that, in general, it is hard to  determine whether 

a point process  is stationary. 

{Ln(t)}n=+ 1 + 2 

not. 

and verify whether o r  not the joint distributions of process  { Ln(t + h)} 

this random process  are independent of h, for  all real values of h. This verifi- 

cation is usually very difficult. For example, let us  determine the distribution 

function associated with L l ( t  + h), where we take h > 0. F r o m  the probabilistic 

interpretation of 

Suppose we a r e  given a point process  defined by 

and we inquire whether this point process  is stationary o r  
- ,- , . . *  

F r o m  the preceding theorem, it is sufficient to  determine the random 

n=i ,2 , .  . . 

{Ll ( t  + h) f T> 

we find that 

P[Ll( t  + h) 5 T] = P[h < L l ( t )  5 T + h] 

co 

+ E  P[(L ( t )  5 h ) n ( h  < L ( t )  5 T + h ) ] ,  n=1 n n+l (1. 2. 8) 

which can be evaluated from the given random process  { L (t)} 

If the point process is to be stationary, we must obtain 
n n=+i ,+2 , .  . . 

The difficulties increase considerably when we attempt to determine higher 

o rde r  distribution functions. 

In spite of the preceding pessimistic comments, the c l a s s  of stationary 

the most familiar examples include the Poisson point processes  is not empty: 
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renewal point process  ( r e f  P. 2, T. 1, . . . ) and the periodic point process  

(periodic occurrences,  with a random start ing t ime uniformly distributed 

over the period). A few additional examples will be given in section 1. 4. 

1. 2. 4 Some general properties of a stationary point process  

1. 2. 4.1 F i r s t  o rder  properties 

Equations (1. 2. 5), (1. 1. lo) ,  (1. 2. 1) give 

and we let  
n occurrences in 

A n ( t , x )  = {  , x > O .  

the interval Lt, t + x] 

Observing that, with h > 0 

we then have 

In the same  way, f rom 

we obtain, the A being disjoint, k 
n- i 

Fur thermore ,  denoting 
n 

(1. 2.  9) 

(1. 2.10) 

(1. 2. 11) 

(1. 2.12) 

(1. 2. 13) 

(1. 2.14) 

(1. 2.15) 

(1. 2.16) 
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we obtain 
n i - 1  

n i  
= P[A.  (t, x ) n E k ( t  + x, h)] 

j = i  k=1 J -k 

n n  

ProDerties of Gl(xl 

(1. 2. 17) 

For xi 5 x2 and any h > 0, we have 

(1. 2.19) 

In particular,  observe that 

(1. 2. 20) 

x 2  2 h ,  h > O  

so that letting h '0, we obtain 

thus showing that G1 (x) is continuous at every x > 0. 

Moreover, Gl(x) is absolutely continuous in every closed set not con- 

taining the origin. Let r, v, h, h . ( j  = 1, . . . n) be positive numbers  such that 
J 

v = ~ - h > O  (1. 2. 22) 

n 
x h .  = h (1. 2. 23) 
j = 1  J 
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and assume that 

u ( x 1 < x 2 < x  < < x  . 
k n 

Using (1. 2.19), we can write 

where we take ho = 0. 

Observing that 
n k k-1 

[Gib + c h.) - GAv + c h.)I  
J j = o  J k=i  j =o 

we can write 

(1. 2. 24) 

(1. 2. 25) 

(1. 2. 26) 

(1. 2. 27) 

By letting h + 0, the right-hand side of this equation tends to zero (u > 0 is 

a point of continuity f o r  G,(x) ), thereby proving the assertion. 

Letting u -, 0, and gl ( 5 )  being an integrable function, we obtain 

X 

G d x )  = GI(()+) + S g d L ) d i  
0 

(1. 2. 28) 

(1. 2. 29)  

(1. 2. 30) 
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In addition, in view of (1. 2.19) we observe that 

gl(x2) 5 g h )  a. e. (1. 2. 31) 

for  x2 2 x1 . 

In other words, gl ( 5 )  is a monotone non-increasing function. 

( r e f  Z.l, Vol. I or  H. l), G1 (x)  is concave ( o r  convex upwards) and it satisfies 

the simplified Jensen inequality, 

A s  a consequence 

G1 [QX + (1 -  CY)^] 2 Q G ~  (x) + (1 - C U ) G ~  (y) (1. 2. 32) 

0 5 C u i 1 ,  x > o ,  y > o .  

In particular, letting y -, 0 

Gl(ax) 1: aG1(X) +(1 - Q)G~(O+) 

O < c u 5 l ,  x > o  

and a for t ior i  - 

G ~ ( c u x )  2 C Y G ~ ( X )  

O < a i l ,  x > o .  

Propert ies  of Sn(x) - and Gn(x) 

For  x1 5 xt and any h > 0, we observe that 

so that using (1. 2.17), we obtain 

Sn(x2 + h) - Sn(x2) 5 Sn(xl + h) - Sn(X1) 

(1. 2. 32') 

b 

(1. 2. 33) 

(1. 2. 34) 

(1. 2. 35) 
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The situation is the same a s  in equation (1. 2.19), hence similar results follow: 

S (x) is concave and n X 
P 

where 
sn(5) = SA(&) a . e .  e 

(1. 2. 36) 

(1. 2.37) 

(1. 2.38) 

we conclude that each G (x) is absolutely continuous for  x > 0 and that n 
X 

Gn(x) = G,(O+) + 1 gn(5)d5 (1. 2 . 3 9 )  
0 

(1. 2.40) 

Notice 

gn(5) = sn(5) - s ( 5 )  (1. 2.41) 
n-1 

so that g ( 5 )  is a function of bounded variation in every closed set not contain- 

ing the origin (difference of two bounded non-increasing functions). 
n 

1. 2 .4 .2  Higher o rde r  propert ies  __- 

A s  an example, consider the joint distribution function 

Observe that 

and consequently that G1, 2(x, y) is continuous f o r  x, y > 0 .  

not be absolutely continuous; an example is provided by the stationary periodic 

point process  (defined in section 1 4.1). 

But G1,2( x, y) may 
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L 

Next, interpreting equation (1. 2 .  34) and choosing k = 1, n = 2, we 

obtain 

{Gl(xZ f h) - Gl(x2)) { G 1 ~ 2 ( X 2 ,  X2  + h) - G ~ J Z ( X ~ J  X t ) }  

which is somewhat s imi l a r  t o  (1. 2.35) 

Following the same line of approach, one obtains similar propert ies  

f o r  higher-order  distributions functions. 

1 .3  The number of occurrences generated by a stationary point process  in a 

given t ime interval -- 

Because of stationarity, equations (1.1.15) and (1.1.169 do not depend on 

t .  Therefore  

p(0, T) = 1 - G ~ ( T )  (1. 3.1) 

p(n, T) = G ( T )  - G ( T )  (1. 3. 2) n n+l 

where 

p(n, T) = P[N(t, T) = n] . (1. 3 .3)  

Whenever there  i s  no ambiguity, the notation N( T) will be used instead of 

N(t, T) . 
The following lemmas  will be used later on. 

Lemma 1: G z n ( 2 ~ )  5 ~G,(T) . (1. 3 .4)  

Using (1. 2.1), (1. 2.10) and observing that Etn(t, 2 ~ ) c E , ( t ,  T)UEn(t+T, T) 

we a r r i v e  a t  (1.3.4).  

x x Lemma 2: If lim n G ( T )  = 0 , 1 L 0 then lim n G n ( ~ )  0. (1.3.5) 
n-coo t n  n-.w 

It is sufficient to show that (1.3. 5) holds when n is odd; in  view of 

(1. 2.9), we observe that 
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f rom which the assertion follows, 

Lemma 3 :  If, for T > 0, h > 0, we let  

S ( T  + h )  - S (T)  n n 
h V (T, h) = n (1.3.6) 

where S ( T )  is defined by (1.2.16), (1.2.36), then V ( T ,  h) is monotone non- 

decreasing in the three variables as  n increases,  T decreases  and h decreases .  
n n 

Let T ~ ,  T ~ ,  hl , h2 be positive numbers  such that T~ 5 T ~ ,  hl 5 h 2 .  

Writing 

the Jensen inequality (1 2 . 3  2) gives 

o r  

Because of (1.2.3 5) 

and a fortiori  - 

in other words 

(1. 3 . 7 )  V (T2,hd 5 V ( ~ 1 , h l )  n n+i 

f l  5 ~2 , hl 5 h2 . 

In what follows, we consider the behavior of the random variable N(T) .  
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Theorem 1: 

i) N( T) is finite valued if, and only i f  

lim G (T) = 0 .  n n+oo 

ii) If f o r  some value TO > 0 

lim G (TO) = 0 
n+oo 

(1.3. 8) 

(1.3.9) 

then (1. 3.8) holds fo r  all T < co 

Proof .  

i) F r o m  (1.3 . l ) ,  (1.3 e 2), we obtain 

and so  CO 

p(k, T) = 1 
k=o 

if ,  and only i f  
l im G (T) = 0 .  

n+oo n 

ii) In view of 

it will be enough to show that (1.3.9) implies  

there ,  one shows that for  every K = 1, 2, . . . 
K lim G ( 2  TO) = 0 ). 

lim G ( 2 ~ 0 )  = 0 (s ince from 
n-oo n 

n +co n 

Because of lemma 1 

and lemma 2 (with A = 0) completes the proof. 



Theorem 2 :  

M 
E[N(T) I < 0O , M E  (1, 2, # . . I  

if, and only if 

Mor e ove r 

Proof. 

Consider the partial  sums 

M n 

k=i 
U = c [kM - ( k  -1) ] G k  

n 

k=i  
W = kMp(k, T) 

(1. 3 .10)  

(1. 3. 11) 

(1. 3.12) 

(1. 3.13) 

(1. 3. 14) 

where for  simplicity we abbreviate G ( T) by G 

(1. 3.14) leads to 

Comparing (1. 3. 13) and k k '  

n + n  Gn+l = u  n (1. 3.15) M 

and a fortiori  - 

w a u  n n 

s) (1. 3.11) implies that 

l im  G n ( ~ )  = 0 
n-co 

so that N(T) is finite valued; moreover, because of (1. 3.16) 

o r  

lim W < 00 
n-co 

M 
E[N(T) 3 < 00. 

(1. 3.16) 
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I nMG < E  , n >  N ( E )  n 

n) Conversely, (1. 3.10) implies 

lim G ( T )  = 0 (Theorem 1) 
n+oo n 

and 
03 

(1.3.17) 

(1.3.18) 

Equation (1.3.18) implies that for  every a rb i t ra ry  given E > 0 and all p, we 

may w r i t e  
n+P 

M 
0 5  c k [Gk - Gk+l 1 < E 

k=n 

for  n > N ( E )  

o r  rearranging the t e r m s  

for n >  N ( E )  (1. 3.19) 

In view of (1. 2. 9) ,  the t e r m s  { } are  positive, so that (1. 3.19) leads to  

I < €  (1. 3. 20) M 
O r  n [Gn - G  

n+p+l 

fo r  n > N ( E )  

Letting p -, 00,  and using (1. 3.17) we obtain 

o r  that 
M lim n G ( T )  = 0 n n+oo 

A s  a consequence, f rom (1. 3.15) 

lim Un = lim W < co 
n+co n-co 

(1. 3 .  21) 



. 
o r  that 

- 19 - 

00 

t 

M 
n=1 - (n  -1) ]G n (7) = E [ N ( T ) ~ ]  , (1. 3. 22) 

thus completing the proof. 

The cases  M = 1, M = 2 are  of particular interest  and deserve special 

attention. 

Theorem 3: If f o r  some T = T~ > 0 

i) E[N( T ~ )  1 < 00 

or  
i i) 

(1. 3. 23) 

(1. 3. 24) 

then the same properties hold fo r  all T < co. 

Proof. 
Fo r  s imi la r  reasons as  in par t  ii) of theorem 1, it wil l  be sufficient to  

show that these properties hold for T = 2To . Two different proofs will be given. 

a) F r o m  

N(t, 2 ~ 0 )  = N(t, TO) + N(t + TO, TO) 

ii) E[N( ~ T c J ) ~ ]  = 2 E [ N ( d 2 ]  +E[N(t, TO)N(t + TO, TO)]  

and because of the Schwarz inequality 

thus completing the proof. 

(1. 3. 25) 

(1. 3. 26) 

(1. 3. 27) 

b) Using (1. 3.  22) with M = 1, M = 2, we have 
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00 

i) Consider the partial  sum 

T )  i s  concave and satisfies an inequality s imilar  to  (1. 2. 33) s o  that n( 

s n (2TO) ZSn(TO) 

and consequently 

ii) Let 
t n+i 

In view of (1. 2. 9), we obtain 

(1. 3. 28) 

(1. 3. 29) 

(1. 3. 30) 

and, a fortiori ,  from lemma 1 

n 
V (2To)  5 G ~ ( ~ T o )  + 16 kGk(TO). 

zn+i k= i 

Because of (1. 3. 24), (1. 3. 29) the right-hand side converges as n + 00; hence 

l im  Vzn+l(  2To) < 00 

n+ co 
and a s  a result  

E [ N ( ~ T o ) ~ ]  < 00 . 
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Theorem 4: 

(1. 3. 31) 

(1. 3. 32) 

if, and only if  

Moreover 

(1. 3. 3 3 )  

(1. 3. 34) 
co c gn(x) = P 

n=i  
a. e. 

where the g (x) are density functions defined as n 

gn(x) = G'(x) n a. e. . (1. 3. 35) 

Finally, we can write 

g1 (x) = PD - F1 (x)l  (1. 3. 36) 

(1. 3. 37) 

where the F (x) are distribution functions having the following properties:  n 
0O 

{xdFn(x) = n - 
P 

0 

(1. 3. 38) 

lim F (x) = 0 
n+co 

(1. 3. 39) 

(1. 3. 40) 

Proof.  

n) F r o m  (1. 3. 28), we have 
0O 

E[N(T)] = G ( T )  < a 0  . 
n = i  

(1. 3. 41) 

This  convergence is uniform fo r  T 5 TO f o r  a rb i t r a ry  TO < 00. In fact  
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G n ( ~ )  5 G,(To) , T TO , (1. 3 .  42) 

M 

(1. 3.  4 3 )  

f r o m  which (Weiers t rass '  M-test) (1. 3 .  41) converges uniformly fo r  T 5 TO. 

On the other  hand, w e  have seen that the functions G (T) are  continuous 

f o r  T > 0. 

M o r  e ove r 

n 
It follows ( r e f  K. 2, page 3 3 9 )  that E[N(T)] is continuous f o r  T > 0. 

N(t, T i  + T 2 )  = N(t ,  T I )  -t N(t f T I ,  TZ) ,  T I  > 0, ~2 > 0 

leads t o  the functional equation 

which admits  only one continuous solution ( i t  is interest ing to  note that t he re  

a r e  infinitely many discontinuous solutions; see Hamel functions in ref W. 4), 

namely 
00 

where p is some positive constant. 

follows 

The convergence being uniform, it 

00 00 

lim G ( T )  = lim 
n=i  T-.O n 7-0 n=1 G n ( ~ ) .  

Thus 
00 

G (O+) = 0 
n = i  

o r  what is equivalent, in  view of (1. 2. 9) ,  

3 

(1. 3 .  44) 

(1. 3 .  45) 

(1. 3 .  46) 

GI(()+) = 0 0 
(1. 3.  47) 

Next, as a result  of l emma 3 ,  we can apply convergence theorems t o  

monotone functions or  series ( ref  H. 3,  pages 414-5 vol I, page 47 vol 11) 

so that  

lirn lirn lim V ( T ,  h) = lim lim lim V (T, h) 
n-00 h+m T+OO n h-0 n-.m T + O  n 

(1. 3 .  48) 
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o r  

and hence 

(1. 3. 49) 

This resul t  may also be obtained by using uniform convergence propert ies  as 

in (1. 3. 45). 

s) We know that S (T)  is concave and satisfies an inequality s imilar  t o  n 
(1. 2. 3 3 ) ,  consequently 

s n (7) Sn(h) 
5- h s ~ .  

7 h (1. 3 .  50) 

In par t icular  

o r  

Letting n - co, and because of (1. 3 .  32) we conclude that 

00 

thus proving (1. 3. 31). 

Next, we consider 
06 

(1. 3. 51) 

(1. 3.  52) 

Since the G (x) a r e  monotone non-decreasing, Fubini's derivation theorem 

applies (ref R. 2, page ll), that is derivation t e r m  by t e r m  is permissible  
n 

a. e. ,  and hence 
03 c gnM P 

n=i  
a. e . ,  (1. 3.  53) 
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where 

gn(x) = G;(x) a. e. 

Because of (1. 2. 30), (1. 2. 39), (1. 3. 47) we obtain 

rT 

(1. 3. 54) 

(1. 3. 55) 

thus showing that the g,(x) are density functions. 

Let us  f i rs t  consider g, (x). Because of (1. 2. 31) and (1. 3. 53), we may I 
let 

g h )  = p[1 - F, (x ) l  , x > 0 (1. 3. 

and observing that the function F1 (x) is non-decreasing, positive and bounded 

by one. 

distribution function having a positive finite mean: the fact that 

More precisely, we want to show that F1 (x) may be considered as a 

gl(x)dx = 1 (1. 3. sm 0 

implies that fo r  arbi t rary E > 0, we may write 

X2 

0 5 1 gl(x)dx < E 

X1 

for  x2 I x1 > X(E)  

and a fortiori  - 

0 5 (x2 - xl )g l (x2)  < E 

for  x1 2 x1 > X(E) 

since gl (x) is non-increasing. 

~ 

56) 

57) 

. 

(1. 3. 58) 

(1. 3. 59) 
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Letting x2 - xI = 1, we see  that 

f o r  xz X(E) + 1 

SO that l im gl (x)  = 0 
X+CO 

and, f rom (1. 3. 56), 

l im Fl (x )  = 1. 
X+oO 

Next, taking x2 = 2x1, we see  that 

0 5 x2g,(x2) < 2E 

s o  that l im xg l (x )  = 0 
X+oO 

and an integration by pa r t s  of (1. 3. 57) gives 

1 
xdFl (x)  = - P 

0 

A s  a resul t  of lemma 3 ,  we can write 

l im  l i m  Vi (T, h) = l im  l im V1 ( T, h) 
h+O T+O T+O h+O 

o r  

that is 

(1. 3. 60) 

(1. 3. 61) 

(1. 3 .  62) 

We next consider the more general case. Using (1. 2. 3 7 ) ,  we let  

S n b 4  = PC1 - Fn(X)I (1. 3 .  63) 

and since s (x) is non-increasing we have the same situation a s  with g, (x). n 
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We a r e  thus led to similar results,  namely 
, 

(1. 3. 64) lim Fn(x) = 1 
X-C 

and M 

{xdFn(x)  = n - . 
P 

0 

(1. 3. 65) 

(1. 3. 66) 

F r o m  
(1. 3.  67) 

(1. 3. 68) 

and observe that 
(1. 3. 69) 

Finally, because of (1. 3. 53), we obtain 

(1. 3. 70) lim F (x) = 0 , n n+m 

thus completing the proof. 

An intuitive interpretation of the F (x) will be given in th  n 

Theorem 5: If 

appendix B. 

(1. 3. 71) 

then 
00 

H(x) = Fn(x) < co 
n=i  

(1. 3. 72)  

where the F (x) a re  the distribution functions defined in theorem 4. n 

Moreover T 

E[N(T)’] = PT + 2 P I  H(x) dx 
0 

(1. 3 .  7 3 )  
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co 

. 

and 

where 

f (x) 00 a, e, n=1 n 

Proof. 

F r o m  (1. 3. 29), we have 

or  

a3 

(2n - l ) G  (T) = E[N(r12] 00 n n=i  

5 f ( 2 n  - l )g  (x)dx = E[N(T)~] < co - 
n=i  n 

0 

(1. 3. 74) 

(1. 3. 75) 

Combining Beppo-Levi's and Fubiniss derivation theorems (ref R. 2 pages 
L 

11, 35), we obtain 
03 

(1. 3. 76) 

(2n - 1)g (x) = e(x) < co a. e. ,  (1. 3. 77)  n n= i  

and in  addition that T 

E[N(T)~] = 1 e(x)dx 
0 

(1. 3. 78) 

thus showing that the function E[N(T)'] is absolutely continuous for  T < CO. 

On the other hand, using (1. 3. 36), (1. 3. 37), we can write 

Using propert ies  (1. 3 .  69) and (1. 3.70) and the hypothesis (1. 3. 71) it may be 

shown (as in theorem 2), that 

l im nF (x) = 0 n n+co 
(1. 3. 80) 
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00 m 

so that 00 

H(x) = C F (x)  < m. 
n=i  n 

(1. .3. 81) . 

(1. 3. 82) 

This  function H( x) appears similar to the so-called ' 'renewal function" defined 

in ref M. 1, pages 364-5. 

Using (1. 3. 78) and (1. 3. 81), we a r r i v e  at 

which is analogous to equation (3.  4), page 370, ref M. 1. 

Applying once more  Fubini's derivation theorem to (1. 3. 82) ,  we 

obtain 
co 

fn(x) = h(x) < co a. e. 
n=i  

where 

f (x) = F ' ( x )  , h(x) = H'(x) a. e. n n 

Theorem 6: 

for  all M = 1, 2 , .  . . 
if, and only if  

K l im n G,(T) = 0 
n-. 00 

for  all K = 1, 2, . . . . 

ii) If for some value TO > 0 

K lim n G ( T ~ )  = 0, K = 1, 2 , .  . . n-.m n 

then (1. 3 .  86) holds for  all T < 00. 

(1. 3. 83) 

(1. 3. 84) 

(1. 3 .  85) 

(1. 3. 86) 

(1. 3. 87) 

Proof. 
i) The necessary par t  was already seen  in (1.3. 21). F o r  the converse 
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we have to show that 

Choosing K = M + 2, (1. 3. 86) implies that for a rb i t ra ry  E >. 0 

K 
n G n ( T )  < E ,  n 2 N(E, K) 

and consequently that 

11 n=N(c , K) n=N(c, K) 

E 

(1. 3.  88) 

ii) It is sufficient CO show that (1. 3.  87) implies 

lim n K Gn(270) = 0, 
n+ co 

which is obtained by applying successively lemma 1 and lemma 2 to  n G (TO) .  

(1. 3 .  89) 

K 
n 

Conclusions 

F o r  stationary point processes  we have observed the following points 

of interest: 

i) The distribution functions Gn( T) a r e  absolutely continuous, except 
i 

perhaps at  
n 

i i) 

the origin. In addition, for every n, the partial  s u m  

Gk( T) is a concave function. 

If f o r  some T = TO > 0 

(1. 3. 90) E"o)I < 93 

then the same holds for all T < 00, which fur ther  implies that the G ( T) a r e  

absolutely continuous everywhere. Then 
n 
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. 
where p is a positive constant (Notice that the case  P = 0 corresponds to  an 

empty point process).  

have a noteworthy structure in t e r m s  of distribution functions F (x) having 

certain analogies with the G (x) [compare (1. 3. 69), (1. 3. 70)  with (1. 2. 9), 

(1. 3. 8)]. 

Moreover, the density functions g (x) = G' (x )  a. e. 
n n 

n 

n 
It was also shown that (1. 3. 90) is equivalent to 

G (h) n 
n=i  h-.O h 

(1. 3. 91) < 00. 

iii) If for  some T = TO > 0 

then the same property holds for  a l l  T < 00 (Theorem 3).  In addition, the 

function E[N(T)~]  is  absolutely continuous for  T < M and is entirely expressed 

in t e r m s  of the F (x), a s  w a s  seen in theorem 5 (s imilar ly ,  one can express  

higher order  moments E[N(T) M n 
] , M 2 3 in t e r m s  of the Fn(x) ). 

iv) The property 
K l im n G (TO) = 0, T O >  0, K = 1 , 2  , . . .  

n-. 00 
n 

is equivalent to  the existence of all moments. 

Since we a re  dealing with non-negative random variables,  it wi l l  be 

useful to rewri te  (1. 3. l ) ,  (1. 3. 2), (1. 3. 36), (1. 3 .  37) in t e r m s  of Laplace-Stieltjes 

t ransforms (ref W. 1). Letting 
00 

- sx .*. 
g i ( s )  = r e dGn(x) 

- 
0- 

J 
0 

M 

f'k( s) = 1 e-SXdF (x) n n 

(1. 3 .  93) 

(1. 3.94) 

(1. 3 .  95) 

. 

0 -  

we obtain 
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c 

.. 

and 1 - fl(s) 
g?(s) = p 

S 

f::: ( s )  - fn(s) 
g'"( s )  = p n-1 
n s 

1. 4 Examples of stationary point processes 

1. 4.1 The Deriodic Doint Drocess 

(1. 3 .  96) 

(1. 3.97) 

(1. 3. 98) 

(1. 3.99) 

This well-known stationary point process  is defined a s  

L n = ( n - l j T  +a, , n = l , 2 ,  . . .  (1. 4. 1) 

where T is a positive constant called the period and where CY is a random 

variable uniformly distributed in the interval (0, TI. Observe that 

f o  ~ s ( n - 1 ) T  

o r  

.b 1 1 - e  -ST -s (nSl )T gn(s) = - e 
T S 

It follows f rom theorem 6, that N(T) has finite moments of all o rde r s  a s  

exp e c t e d. 

(1. 4. 2) 

(1. 4; 3 )  

1. 4. 2 The Poisson point process  

This symmetr ic  stationary point process  is also well-known (ref  F. 1, 

P. 2, T. l) ,  and is defined a s  

L = L 1  + x l  +. . .+  x n n-1 

where L1,  x l ,  . . x a r e  independent random variables,  identically n-1 
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distributed with density function 

gib) = f , (x )  = Pe -Px , p >  0 

so that 
g"'( s) = E[e - sLnj  

n 

o r  that 

. 
(1. 4. 5) 

(1. 4. 6) 

(1. 4. 7)  

Using theorem 6, one shows that N(T) ,  T <co has finite moments of all o rders .  

In addition, we observe that 

co c g n ( d  = P 
n=i  

and (1. 3. 76) leads to 

E [ N ( ~ )  3 = PT + p2T2 . (1. 4. 8) 

The Poisson point process  is often called a llpurelylI random process  

or  a process  with '!no memory" since it can be shown that the numbers  of 

occurrences in non-overlapping intervals a r e  independent. 

emission of the electrons in a vacuum tube constitute a Poisson point process .  

The instants of 

1. 4. 3 The zero-crossings of the Ornstein-Uhlenbeck process  - 

In this example the stationary point process  {t ) is generated by the n 
zero-crossings of a symmetr ic  stationary Gaussian Markov p rocess  x(t) ,  i. e. 

t E {x(t)  = 0) (1. 4. 9 )  
n 

This point process has been studied by various authors ( s e e  the list of r e f e r -  

ences in S. 3, M. 1, L. 3)  and it has been shown that 

(1. 4.10) - T  A r c  sin e . 2 G ~ ( T )  = 1  - - IT 

~~~ ~~~ -~ ~ 
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It follows that 
(1. 4. 11) 

and a s  a resul t  of theorem 4, we obtain 

E[N(T)] = co (1. 4.12) 

It is of interest  to  observe that this resul t  did not require  the knowledge of 

all the G (TI, n 4 2. n 
rived by different methods. 

In fact, (1, 4.129 is well-known and has been usually de- 

1. 4. 4 A stationary point process  with periodic l imit  points 

On the interval [k, k + 11, k = 0, +1, 2 2 ,  we define the set  of points 

where 

Tk = { t k }  m (1. 4.13) 

(1. 4.14) 

Denoting by CY a random variable uniformly distributed between zero and one, 

the point process  generated f rom the set  

T =  D T  k=-m k +CY 

is stationary. Then, we obtain 

G { l + c ) = l ,  E > 0, n = l , 2 ,  . . .  n 

and theorem 1 leads to 

N ( l  + E )  = C O ,  

(1. 4. 15) 

(1. 4.16) 

$1. 4.17) 

the resul t  naturally expected. 

G I  ( T) for T 5 2 requires  a more  involved calculation. 

We should note here  that the behavior of 
1 It has been found that 

(1. 4.18) 

and, in view of theorem 4, we conclude 



- 3 4  - 

as it should be. 

1. 4. 5 Stationary point p rocesses  with skips 

Let us  consider a stationary point p rocess  ( t  } where the t denote n n 
the intended instants f o r  occurrence of events. 

instant t 

skips occur  independently. 

stationary point process  which is called a stationary point p rocess  with skips. 

We shall  now relate  the two point processes .  

Suppose that at each scheduled 

the probability of skipping the event is q < 1, and assume that all the 

The remaining points, { th) 
n' 

constitute a new 

Using the usual notations, we can wri te  
00 

and since 
n- 1 

P[t: = tn] = q (1 - q) 

we obtain 

GI ( T) = (1 - q) qnG'k (t) 
nX0 n+l 

or  

gy: ( s )  = (1 - q) qn gn+, ( s )  
n=o 

(1. 4.19) 

(1. 4. 20) 

(1. 4. 21)) 

(1. 4. 22) 

thus giving the distribution function for  the first passage t ime in the point 

process  with skips. Observe that 

n k 
lirn G:( T) = (1 - q) lim lim q G,+,(T) 
-r+ 00 T + W k + M  n=o 

n k 
= (1 - q) lim lim q G n + I ( ~ )  

k-.m T+CO n=o 

M .- 

= ( l - q ) C  q n = l ,  
n=o 

as it should. 
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More generally we have 

n (1. 4. 23) 
skips in 

n n+m m+n-1 trials 

00 

P[LA 5 T] = cP[Ln+m5T]P 
m =o 

and s ince 

= (1 - q) Cn-l n+m-1 (1 - q)n-'qm (1. 4. 24) [ , + j m  skips in P t ' = t  
n+m-1 trials 

where 
Ck = n! 

n kI(n - k)! 

it follows that 

o r  
00 

8:: (s) m=o n+m-1 n+m 

(1.4. 25) 

(1.4.26) 

(1.4. 27) 

Higher -order  distribution functions can be calculated in  a similar 

way. Fur thermore ,  if L, , x l ,  xn (xn = L 

var iab les  such that all the x 

- L ) are  independent random n+i n 
a r e  identically distributed according t o  n 

.L 

(1.4. 28) f;' (s) = E[e-sxn] , 

then the Li , x i ,  

and we have 

. . x' are  independent and the x '  are identically distributed, n n 

g l (  s )  

1 - qf?(s) 
g;:: (s)  = (1 - q) 

- SXA f l (  s) 
fi"(s) = E[e ] = (1 - q) 

1 - q f l ( s )  

Example 1: The Poisson point process  with skips  

Applying (1.4. 5) t o  the preceding equations, we obtain 

(1.4. 29) 

(1.4.30) 
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(1. 4. 31) 

showing that the Poisson point p r o c e s s  with skips is again a Po,sson point 

process  with parameter  (1 - q)p. This result  is well-known ( re f  P. 2 ) .  

Example 2 :  The periodic point process  with skips 

Using (1.4.1), (1.4.3),  equation (1.4.29), (1 .4 .  30) lead to 

(1. 4.32) 

-ST 
(1.4.33) e 

1 - qe 
f;yS) = (1 - q) -- -ST 

We note that a point process  with skips could constitute a model for  a piece 

of equipment designed to  operate a t  scheduled instants of time, but which, 

f o r  some reason, occasionally fails to  do so .  

1 .4 .6  Stationary point process  with scheduled skips 

Let the {t,} constitute a stationary point process .  Assume that every 

other" occurrence (or event) is skipped; this generates a new stationary point 

process  {tl} which can be related to {t,} F o r  instance, n 

that is 

Also 

:::A more  general  case is obtained by skipping every k other  occurrences 
(he re  k = 1). 

(1.4.34) 

(1. 4.35) 

(1.4.36) 

(1.4.37) 
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e . 

Similarly, higher-order distribution can be calculated. Furthermore,  i f  the 

L1 x l ,  xz ~ 

identic ally di s t r ibut ed with 

xn are independent random variables such that all the Xn are 

fr(s)  = Eee-Sxn] 

V 1 then the same propert ies  hold for Li x p ,  e o x  and n 

Example: The Poisson point process ~ 

In this case,  we obtain 

(1- 4.38) 

(1,4.39) 

(1.4.40) 

(1. 4.41) 

(le 4.42) 

1.4. 7 Stationary point process  with j i t ter  

Let the {t } constitute a stationary point process  and suppose that {en} n 
denotes a stationary random process which is independent of the tn. 

{tn + cn} generates a new stationary point process  { t ' }  which can be defined 

in t e r m s  of the {tn} and {en} [observe that the point process  {t;} is obtained 

by re-order ing the set  {t 

u s  consider an example 

The set 

n 

+ cn} and this may be sometimes difficult]. Let n 

Example: Nearly-periodic point process 

We assume that the {t } constitute a periodic point process  defined by n 
equation (1. 4.1) and that 

with probability one. 



. . 
(1. 4.44) 

(1. 4. 45) 

In an analogous way, higher -order  distribution functions can be calculated. 

It is of interest to observe that a stationary point process  with j i t ter  

can be taken as a model for  a situation when t ime-j i t ter  e r r o r s  are introduced 

in a sys tem which is scheduled to operate a t  intended instants of t ime t . n 
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C H A P T E R  I 1  

Secondary Processes  and Random Sampling 

Summary 

Following a terminology used by Takacs (ref T. l) ,  the random process  

co 
(2 .  0. 1) 

will be called a secondary process; here ,  T(t, u) denotes a deterministic function 

and we assume that the t constitute respectively a stationary point process  

{ tn} and a stationary random process { (Y } which a r e  independent. Whenever 

q(t ,  u) = q(t  - u) i. e . ,  

cy n' n 

n 

( 2 .  0. 2) 

we say that y(t) is a stationary secondary process .  

in modern electronic systems; a classical  case  is provided by the shot effect 

( ref  D. l o ,  L. l., and specially ref B. 8. ) .  

process  is given by the cardinal se r ies  

Such processes  are  common 

Another famil iar  example of a secondary 

0 0  
2 

0 0  

tn) 

2 (t - tn) 

00 sin- ( t  - 
- yIt) = ;z: 

n=-m 

2lT constitute a periodic point process  with period - 
n WfJ 

where the t 

Let us  consider a reciprocal situation: suppose that a continuous 

parameter  random process  x(t) has been sampled at  instants t [the t constitute 

a stationary point process], thus leading to  a set of samples  {x(t >; the problem n 
of optimum l inear  interpolation consists of finding a deterministic function h(t) 

such that 

n n 

1 1  represents  the best" recovery of x(t) .  

(2 .  0. 3) 

Problems of the types indicated are in general difficult to  solve. By 

- 3 9  - 
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f l  introducing an improper" random process,  and by using some heurist ic 

reasoning, in this chapter we suggest a possible approach to the study of 

(2 ,0 .1) ,  ( 2 . 0 .  2) and ( 2 . 0 .  3 ) .  

2 . 1  The z-process 

2 . 1 . 1  Definition 

Let u s  consider an enumerable sequence of rectangular pulses, with 

trail ing edge occurring at  the instant tn [the t 

process] .  Let d be a positive constant, and assume that the width and height 
@n of the pulse a t  tn a re  respectively d and - [the random process  {an} is s ta -  d 

tionary]. If t l  denotes the first passage t ime after a fixed instant t, we define 

constitute a stationary point n 

a random process  k i f t l  - t r d  

i f t l  - t > d  
z(t) = 

which we call  the z-process.  We  shall assume that {t,) is such that 

and in view of (1.3.33) , it follows that 

(2 .1 .1 )  

( 2 . 1 . 2 )  

(2.1.3) 

. .  
(2.1.4) 

Observe that i f  the pulses do not overlap (with probability one), 

equation (2.1.1) is equivalent to 

co 
(2.1.5) z(t) = c crnp(t - tn' 

n = -  00 

1 
where p(t) denotes a rectangular pulse of width d and height 

as d + 0, we obtain the "improper" random process  

Moreover, 
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00 

(2.1.6) 

which consists of an infinite t ra in  of impulses (delta-functions) occurring at 

random instant t with random intensity Q* 
n n 

2.1. 2 Statistical propert ies  

In view of the preceding definition, the random process  z(t9 is stationary 

( in  the s t r ic t  sense) 

o rde r  s ta t is t ics  ~ 

Fi r s t -o rde r  s ta t is t ics  

We have 

The following study will be limited to first and second 

that is 

where 

Second-order s ta t is t ics  

Similarly, 

- C Y  
z = -Gp(d) d 

- 
z = E[z(t)] 

(Y = E[@ ] n 

( 2  0 l o  7) 

(2.1.8) 

(2.1.9) 

E [ z ( ~ ) ~ ]  = E[%] P[tl - t 5 d] i . e ,  

R (0) = - “ O )  Gl(d) (2.1.10) 
z dZ 

where 

( 2 e 1 * 11) 

(2 .1 .12 )  

Next, we may consider R (T)  where without loss  of generality we assume the 

argument T positive. the forward point process  for  

the instant t, and by ti the f i r s t  passage t ime after t + T~ it is c l ea r  that ti 

z 
Denoting by {t 1 n n=l,2, 
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could be ei ther  t l  o r  t t  o r  t3 e Letting 

I 

L1 = tl t, LI = tl  - (t + T) J 

we define the joint event 

(2.1.13) 

(2.1.14) 

The Bn being disjoint and observing that 

it follows that 
. m  

(2.1.16) 

This correlation function can be evaluated from the process  { L } as follows: 

i) For T > d, interpretation of ( 2  1.14) leads to 

n 

P[Bo] = 0 ( 2.1.17) 

P[B,] = P[(L1 5 d ) n ( T  < Lz 5 T + d)] (2.1.18) 

P[B 1 = P[(L1 .< d ) n ( L  5 dn(T < Ln+l 5 T + d)], n 2 2 (2.1.19) n n 

ii) and fo r  0 < T 5 d 

P[Bo] = P[T < L1 5 d] = GI (d) - G I (  T) (2 .1 .  20) 

(2.1.21) P[B 1 = P[(L 5 T ) ~ ( T  < Ln+l 5 T + d)], n 2  1. 
n n 

It is interesting to  observe that the z-process  is continuous in the 

mean. In view of (2.1.21),  (2 .1 .20 ) ,  (2*1.16) ,  (2 .104) ,  (2.1*10), (1.3.47), we 

can write 

and as T + O,, it follows that 

Rz(o+) = R Z (0) (2 .1 .22 )  
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2.1.3 Discussion on special cases 

i) Suppose that the stationary point process  {t,} is such that, for  all 

n 
- t  > P  n+l n t (2-1 .23)  

fo r  some positive constant P o  

spacing 1 between consecutive occurrences (a case  commonly encountered) 

Let us consider some of the implications. 

In other words, there  exists a minimum time 

First we observe that 

= P[L2 5 e ]  = 0 

and, a s  a result  of ( 2.1.4), it follows 

Gl(T) = PT, T S  I! 

Then, we notice that the summation ( 2  1 ~ 16) is finite and can be written 

where 
T 

N( T, e )  = rnax {k I k 5 p + 1); k = 1, 2, . 

If, in addition d < P ,  it can be seen f r o m  (2*1.17) ,  * .  (2 .1 .  20).  ~ that 

R ( T )  = -  
Z 

for  T < d 

f o r d < T < P  - d  \ O  

(2 .1 .  24) 

(2.1-25) 

( 2 . 1 . 2 6 )  

(2 .1 .27)  

o r  with a sketch 
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Figure 2.1. Sectional Sketch of R (T) .  
Z 

Notice that 

lim R (7) = P p ( 0 )  6 ( ~ )  , 
d-0 

1.1 < P . 

We observe also that the representation ( 2 -  1, 5) is valid, i. e. , 
a3 

(2.1.28) 

(2.1.29) 

1 
(p  denotes a rectangular pulse of width d < P and height - ) .  d 

ii) Suppose that the stationary point process  is such that 

L1, X I ,  . . .x 
x 

and denote - 

[xn = L - L ] are independent random variables and that the n n t i  n 
are  identically distributed; we will assume that density functions exist  n 

j E (0, 1, a .}  (2 .  1. 30) 1 f (a) = l i m  P[Q < x .  I Q + h] - J +k h 

I1 

h+O k=n n 

W e  shall  evaluate (2.1.16) under the given assumptions. 

Observing that, with y > x 

(2.1. 31) 
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equations (2.1.18) and (2.1. 21) (with n = 1) can be combined in the single result 

d T+d 

P[B1] = 1 gi(x) U ( T  - X) I f l ( y  - x)dydx (2.  1. 3 2) 
T 0 

where u(t) denotes the s tep  (or Heaviside) function 

1 , t > O  i 0 , t r o  
u(t) = 

Similarly, with x < x + u < y, we can write 

(2.1. 3 3 )  

and it follows that eqn. (2.1.19) and (2.1. 21) with n 1 2 a r e  unified by the single 

Finally, the correlation function R ( T) can be written 
A Z  
U 

2.1. 4 Example 

We shall assume that the {t } constitute a Poisson point process  (see n 
section 1. 4.2) and that 
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, n = O  

, n L  1 ~ 

Q = 1, p(n)  = 

Using ( 2 . 1 . 7 ) ,  we  obtain the average value of the z-process  

z =  - ( l - e  1 - Pd) 
d 

(2.1.38) 

(2.1.39) 

A s  for  the correlation function R (T), it will be interesting to give 
Z 

two different calculations. 

i) For T > d, equation (2 - l e16)  can be written 

1 
R ( T )  = s P [ ( L ,  5 d ) n ( L :  s d)I 

Z 

1 P 
= 3 P[Ll 5 d ] P [ L ,  5 d] 

(2.1.40) 

in view of the well-known fact that the Poisson point process  has  no memory.  

For 0 5 T S d, we can write 

(2.1.41) 

ii) The same resul ts  can be obtained f rom (2.1.37). Observing that 

( f o r  a Poisson point process)  

co co z fnb) = c g n b )  = P 
n=i  n= l  

(2.1.42) 

( this  may be seen f rom section 1.4.2) , equation (2.1.37) becomes 
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. d d d r+d T-X 

0 0 T - i o  

(2.1.43) J T Z o  

The evaluation of these elementary integrals leads to ( 2.1.40) and ( 2.1.41). 

sketch of R (T)  is given below. 

A 

z 

I 

-;c ,,’ 

Figure 2.  2 .  Sketch of the cokqelation fdnction R (T)  . 
Z 
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2 .  2 The impulse process 

2.  2 e 1 Definition 

The impulse process  s( t )  i s  the improper  random process  represented 

a s  
M 

s(t) = fYn6(t - tn) 
n=-m 

(2 .2 .1 )  

Using some heurist ics,  we will define f i r s t  and second order  s ta t i s t ics .  

2 .  2 .  2 Generalized s ta t is t ics  

Two cases  w i l l  be considered. 

2 .2 .2 .1  The case t > 0 

We assume that the point process  {t  } is such that (2 .1 .  23) holds, i m e e ,  n 

- t  > P >  0 
n+i n t 

with probability one. 

In view of ( 2 . 1 .  29), we can write 

s( t )  = l im z(t) 
d+O 

First -order  statist ics 

Assuming E[ l im z ( t ) ]  = l i m E [ z ( t ) ] ,  equations (2.1.71, ( 2 . 1 . 2 )  lead to 
d-0 d+O 

( 2 .  2 . 2 )  

( 2 . 2 . 3 )  

Second-order statist ics 

Similarly, f r o m  R s ( r )  = E[s(t) s ( t  + T)]  = l im  R ( T )  and because of (2.1.251, 
- 

d+O Z 

(2.1. 28), (2.1018), (2.1.19), it  follows that 

(2 .2 .5 )  
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. 

. 
' 

thus determining the generalized correlation function R (T) in terms of the 

statistics of the { L } process .  
S 

n 

Discussion and example - 
It is important to note that 

P[(Li 5 d)n(L 5 ~ ) n (  T <L S.+d)]= P[(LI S d n ( + < L  s T + d ) l  n+l n+l n 

, for d < P ( 2 . 2 . 6 )  

and that 

Rs(+) = O ,  O <   IT^< P . ( 2 . 2 . 7 )  

It is interesting t o  observe that if we assume the CY t o  be uncorrelated n 
with zero mean, this generalized correlation function becomes 

R s ( d  = PP (0) 6( +) ( 2 .  2 .8)  

which is in accordance with the common belief that one may think of white noise 

as a t ra in  of uncorrelated impulses occurr ing randomly in time. 

In o rde r  to  provide an example, we shall (evaluate expression ( 2 .  2 .5)  

under the following conditions: 

constitute a stationary point process with jitter, {t'} = (tn + tn} [see section 

1. 4. 71, such that 

we suppose that the instants of occurrence 

n 

i) for all n 

- t  > 2 P  tn+i n (2. 2. 9) 

and such that the random variable L1 , x l , .  . . x 

are  independent with all the x identically distributed according t o  a density 

function f l  (u) 

associated with the t p rocess  n n 

n 

ii) the a r e  pairwise independent with identical density function f(u)  n 
such that 

- e  < E  ( 0  n (2 .  2.10) 

w&h probability one, 
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A s  in  the example of section 1. 4. 7, we can wr i te  

= p ~ ( o  < L1 + d)n(L + E 5 T)n( T <  L,+~ + E  n+n 5 T +d)] n n  

I s 
where the Ln a r e  associated with the t n -process.  

that  fo r  d < P, the preceding expression [call it J] simplifies and becomes 

However, it should be observed 

Thus, f o r  d < P 

J = P [ ( O  < L1 + c 1  5 d)n(T < L1 + x1 + + xn + cnS1 5 + d)] 

d-u T+d -u 
(2 .  2.12) 

where n(u) is the density function for  x1 +. e +x + E 
n n+n 

Next, we may notice that by vir tue of (2 .  2. 9 ) ,  ( 2 ,  2.10) and ( 2 ,  1. 24), 

equation ( 2 .  2.12) can be written 
21 d-u 

J J  J 
0 -u 7 - U  

If we assume that f and n a r e  continuous, it  t h e n  follows that 

2P 2P 

(2 .  2. 13) 

::This interchange of l imits  holds under weaker assumptions than continuity 
( s e e  Hobson) 
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and using the theorem of the mean, we obtain 

2e 
J 
d2 lim - = f( -u) n( T - u)du 

d-0 0 

= PPnh) (2.  2.14) 

where p (7)  denotes the density function for  x1 + +X n + E n+1 - c l .  

quently, equation ( 2 .  2. 5) can be written 

Conse- n 

Letting 

y(iw) = E[e -iccx,l 

and observing that 

it m 

f r ( i w )  = E[e .-iwrnl 

00 

(2.  2.16) 

(2.  2.17) 

y be seen by using Beppo-Levi's theorem (ref R. 2. ) that  if we assume 

(2.  2.18) 

we obtain from 
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00 
n 

that  

and where for  n > 0 

Illustration: Nearly-periodic point p rocess  with skipso 

We have for the periodic process  with skips, f rom (1. 4. 33) ,  

and f rom (1. 4. 21) 

and we shall  assume that 

p ( 0 )  = 1 + u t  

The evaluation of the infinite s e r i e s  ( 2 ,  2.19) leac; to  

(2. 2. 20) 

and 
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. 

where 

P = P  + q -  p q  * ( 2 .  2. 21) 

Two limiting cases  fo r  the preceding expression should be considered: 

view of the following propert ies  of a Poisson kernel (ref W. 2. ) 

in 

2 00 

= 2 6 ( w  - nwo) 1 -  P lim 
1 - 2p COS UT + p2 T p++l n=-m 

1 21T 
T 

03 
2rr 
T nz-00 

1 - p  2 
= -  b [ o -  ( n + y ) o o ]  , w o = -  lim 

p - 1  1 - 2~ COS UT + pz 

and observing that 

it follows that in a generalized functbn sense,  we can write: 

when 

p =1, q < l  

then 

( 2 .  2. 22) 

03 

9,b) = - - q [ l + u 2  - ( l -q) ly( io)12]+(1-q)2  ly(iw)12$ 6(w-nwo) ( 2 .  2. 23) 
T n=-oo 

The case ( 2 .  2. 22) with q = 0 (no skips) is well-known. 

with a’ = 0 corresponds t o  an alternating impulse process  

The case ( 2 .  2. 24) 
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M ._ 

s(t) = (-1P 6 ( t  - t ) n n=-oo 

where the tn constitute a nearly-periodic point process .  

2. 2. 2. 2 The case  f = 0 

Assumption (2.1. 3) indicates that the probability of having two o r  more  

occurrences in a small interval is negligible; as a result, the case  P = 0 could 

be considered as the limiting situation of section (2 .  2. 2.1) when P -+ 0. 

view of (2.  2. 4), (2 .  2. 5), (2 .  1. 26), it follows that 

In 

- 
s = E[s(t)] = (rp ( 2 .  2. 27)  

and 

( 2 .  2. 28 )  

Discussion and example 

We have found it difficult to give a rigorous justification for  what 

precede s. 

Let us  evaluate ( 2 .  2. 28)  under the assumption that L1 ,  x l ,  . . . x are 
n 

independent random variables such that all the x 

according to a continuous density function f ,  (u). 

tions (2..1..32),- (2.  l. 35) that (2 .  2. 28)  leads to 

a r e  identically distributed 

It may be seen f rom equa- 
n 

(2.  2. 29)  

with 
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Notice that in view of 

we have rlr 

g l ( s )  = p 1 - f;(s) 
S 

(2. 2. 30) 

thus identifying f ( T )  as the derivative of the distribution function F ( T )  

which appears  in equations (1. 3. 36), (1. 3. 37). 

the point process  {t ] satisfies 

n n 
Also, we should note that i f  

n 

E[N(T)~] < 00 (2.  2. 31) 

it then follows f rom (1. 3. 74) that 

co M 

If we assume on the other hand that condition (2 .  2.18) holds, we obtain 
00 4. 

$,(a) =P c p (n)f-'.(ia) n 
n=-co 

Illustration: Poisson point process 

We consider various choices for the p (n): 

i) i f  we take 

00 00 

::We recal l  that f rom theorem 4, G,(T) = p r  and 
n=i  n=i  

gn(x) = p a. e. 

(2. 2. 3 2 )  

(2. 2. 33) 
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CY = 1, p ( 0 )  = 1 +r* 

p ( n )  = 1 (n 2 1) 

we obtain f rom (2 .  2. 27) that 

and f rom (2.1. 42) and ( 2 .  2. 29) 

0) = p(1 + u 2 )  + 2ITP26(w) . %( 

we have - 
s = o  

( 2 .  2. 34) 

(2 .  2. 3 5) 

(2.  2. 36) 

(2.  2. 37) 

(2 .  2. 38) 

(2.  2. 39) 

It is interesting to observe that the case (2.  2. 37) occurs  when we have an 

alternating impulse process  described a s  

co 
s ( t )  = ( - l )n6 ( t  - tn) (2 .  2. 41) 

n=-oo 

where the {t ) constitute a Poisson point process .  
n 

iii) i f  we choose 

it follows that condition (2.  2.18) is satisfied and consequently f rom 

(2.  2. 42) 
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. 

( 2 .  2. 3 3 ) ,  we obtain 

(2. 2. 43) 

2. 3 Applications to secondary Process 

Let us consider a secondary process  

00 

(2. 3.1) 

which we write 

(2. 3.  2) 

where 

00 

s(t) = c (Y 6 ( t  - tn) n n=-m 
(2. 3 . 3 )  

and {tn) is a stationary point process.  In other words, we I .  are  viewing a 

secondary process  y(t)  as the output of a l inear  time-varying system (acting 

as a shaping filter) having as an input the impulse process  s(t). 

Let u s  assume that equation (2 .  3. 2) may be handled as if s(t) is a 

perfectly "good" process.  Under such conditions, we obtain f rom (2 .  2. 27) i 

(2. 3 .  4) 

assuming convergence of these integrals [R 

o r  ( 2 .  2. 28)]. 

is defined by equation (2 .  2. 5) 
S 
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It is interesting to consider the case when y(t) is a stationary 

secondary process,  i. e. ; 
00 

y(t) = QnT(t - tn) 
n=-co 

Here, equations (2.  3. 4), (2 .  3. 5) lead to 
00 - 

y = ECy(t)l = aP S.I(.)Q 
-co 

(2. 3.  6) 

(2 .  3 .  7) 

There  a r e  cases  where the classical  Parseva l  relation ( in  L z )  can be extended 

t o  hold in a more  generalized Four ie r  theory ( ref  L. 4. ).  

tions, equation ( 2 .  3. 8) would lead to  the familiar relation 

Under such condi- 

.b 

where q"*(io) is the Four ie r  t ransform of q( t ) ,  thus giving the spectral  density 

associated with y(t) in t e r m s  of the generalized Four i e r  t ransforms of q(t)  and 

E x a m d  e s 

1) The coin-tossing process  

This process  is well-known ( s e e  for instance ref L. 1, page 

128,. . . ). It is defined a s  

(2.  3.10) 

where itn} is a periodic point process  with period one, and the an are 

independent random variables taking on the values zero  or one with respective 

probabilities q and 1 - q. 
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. 

It is interesting to observe that y(t) can be interpreted as a secondary 

p rocess  in two equivalent ways: 

o r  

M 

where q is a rectangular pulse of unit height and unit width and where { t l )  

constitutes a periodic point process  with skips. 

( 2 .  3. 9 ) ,  ( 2 .  2. 23 

.. n 
Equations ( 2 .  3 .13 ) ,  ( 2 .  3. 7) 

with u2 = 0 and y(h) = 1) lead t o  

or  

2 )  The random telegraph wave 

This  process  is usually defined as 

n+i y(t) = (-1p J t < t 5 t n 

where the set {t } constitutes a Poisson point p r o  

considered as the output of an integrator with input 
n ess.  y(t) c-uld be 

(2. 3.  14) 

( 2 .  3.15) 

( 2 .  3.16) 

. s(t) = c 2 (-l)%(t - tn) . 
n=  -00 

. .  
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we obtain 

o r  
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2. 3.  7 ) ,  (2 .  3. 9), (2 .  2. 37), ( 2 .  2. 40) and in view of 

4P 
wz + 4/32 9 (4  = 

Y 

R (T)  = e -2PI.l 
Y 

which are well -known resu l t s  . 
3 )  Poisson emission of pulses - 

We consider 
00 

Y ( t )  = c cynq(t, tn) 
n=-m 

. .  

(2 .  3.17) 

where {t,} is a Poisson point process  and where the cy n are  assumed to  

satisfy (2.  2. 34) 

Using (2.  3.4)' (2 .  3. 5), (2. 2. 35), we obtain immediately 
co 

E[y(t)] = P I T  ( t J  u)du 
-00 

(2 .  3.18) 

r e su l t s  which agree with ref L. 1. pages 149,151. 

In particular,  if y(t) is a stationary secondary process ,  we obtain 

(2 .  3.19) 

00 
n 

. 

(2. 3 .  20) 
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and 

The preceding equations a re  useful for studying the current  y(t) at 

the anode in a pentode; if T ( t  - a) denotes the current pulse produced at the 

anode by an  electron emitted f rom the cathode at the instant u and if  q is the 

probability of interception by the grid , we can write 

t st n. 
(2. 3. 22) 

where {tl} is a Poisson point process  with skips. 

Poisson point process  with parameter  p ( l  - q), i t  follows f rom (2. 3. 21), 

(2. 3. 22) that 

Knowing that { t l }  is a n - n  

a3 
L 

y = (1 - q)PJ%)du (2. 3. 23) 
0 

F o r  a didde, we take q = 0 and in this case  the preceding equations bear  the 

name of Campbell 's theorem. 

Illustrations 

I 1  i) The infinite Poisson" cardinal s e r i e s  

We define thks pmcess'as 

co sin- a 0  ( t  - tn) 

- (t  - tn) 

Y( t )  = c 2 
0 0  
2 

n=-m 
(2. 3 .  25) 

where {t } is a Poisson process.  n 
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From equations ( 2 .  3. 20), (2.  3. 21, a2 = 0) and in  view of 

I T2 

21r , T I -  
0 0  

wo sin 7 T 

1 1  ii) The semi-infinite Poisson“ cardinal s e r i e s  

This process  will be defined as 

t ct s in  - ( t  a 0  - t ) 
2 n n 

n= -00 

y(t) = c 
2% ( t  - tn) 
2 

Since 
WQ sin-5j-t 

rl(t) = 

or 

(2 .  3. 26) 

( 2 .  3. 27) 

(2.  3. 28) 

(2 .  3. 29) 

L , t > O  
a 0  -t 2 

(2 .  3. 30) 

0 , t 5 O  

we  obtain this  time 

E[y(t)] = $ PT 

(2 .  3 .  31) 

(2.  3. 32) 
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. 

4 
b ( 4  + P 7 IArctg -% I 2  p2 T2 

4 2io  
OO 

$I (0) = 21T 
Y 

(2.  3 .  33 )  

(2 .  3. 34)  

and observe that 

Ry(0) = E[y(t)'] = $P2T2 + $PT . ( 2 .  3 .  3 5 )  

iii) The infinite t ra in  of rectangular pulses 

We consider 

oo 

Y ( t )  = c y l t t  - tn) 
n=-oo 

where the an satisfy (2. 2. 34) and where r(t) is a rectangular pulse of width 
1 d and height - Therefore 
d '  

2 @  s in  - 
(2.  3 .  3 6 )  

A s  a resul t ,  we obtain 

E[y(t)I = P 
2g 

2 s in  
$I (a) = 2TrP26(") + P(1 + u2) 

wd 2 Y (7) 

(2.  3 .  3 7 )  

(2. 3. 38) 

and 

(2 .  3 .  3 9 )  

It is interesting to  compare these results with equation (2.1. 39) ,  (2 .1 .  40), 



- 64 - 

(2.1. 41). [See also Fig. 2. 3 .  3. 

2. 4 Applications to  random sampling 

2. 4.1 Introduction 

The problem of linear interpolation is well-known and has  been briefly 

defined in the summary for  this chapter. However, in this  definition, we did 

not take into account the e r r o r s  introduced by the sampling mechanism; e r r o r s  

in  amplitude and e r r o r s  in timing (assuming zero-width sampling).  

sult, the problem defined by equation (2.0.3)  will be simply res ta ted  in  terms 

of 

A s  a re-  

(2.4.1) 

where e 

amplitude. 

denotes the t ime-j i t ter  e r r o r  and a n n 
Equation (2.4.1) can be written 

r ep resen t s  a scaling e r r o r  in  

00 

A 
x(t) = l h ( t  - u)y(u)du 

-00 

where 

with 

and 

00 

x l ( t )  = x[t + e( t ) ]  

e ( t  ) = en n 

( 2.4 .2)  

( 2 . 4 . 3 )  

(2 .4 .4 )  

( 2 . 4 .  5) 

. ( 2 .  4 .6)  

Our aim i s  to  find the interpolation function h(t) which will allow the 
A 

"best" recovery of x(t) [x(t) is often called the bes t  estimate of x( t ) ] .  

choosing as index of performance the minimum mean-square e r r o r  cri terion, 

we shal l  solve this problem by employing a heuris t ic  extension of Wiener ' s  

f i l tering theory.  

By 
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Figure 2. 3. Correlation function for  the infinite t ra in  of 
rectangular pul s e s 
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2.4 .  2 Brief review on Wiener 's  theory for  filtering. 

The concept of this theory is famil iar  and we shall  briefly summar ize  

some classical results by considering a simplified case ( for  the details  on 

the theory, we refer  to W. 3, B. 7,  D. 4, L. 1). 

Assuming that 

a r e  continuous functions and that each has  a Four i e r  t r ans fo rm [respectively 

$,(o), $y(o), 8 (41, we  want to find the function h(t) such as to minimize 
*Y 

where 00 
A 
x(t) = l h ( t  - u)  y(u)du 

-00 

This problem leads to 

i) A non-realizable solution h(t) obtained f rom 

( 2 .  4.10) 

( 2 .  4.11) 

( 2 .  4.12) 

where H(o) denotes the Four ie r  t ransform of h(t) [possibly in an extended sense]. 

ii) A realizable solution h(t) given by the Wiener-Hopf integral  equation 

00 

R (T)  = I h ( u ) R  ( T  - u ) d u ,  T ?  0 ;  
Y 

O 
XY 

using complex variables techniques, it can be shown that if 

-00 

(2.  4. 13) 

(2.  4.14) 
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- 0 2  (We may note that 9 (a) = e violates condition (2. 4.14). ) 
Y 

, 

where 

h(u+iv) Gz(u + iv) = e = P(u, v) + iQ(u,v) 

with 

G2 (or  G I )  is the solution:: of the so-called factorization problem 

(2. 4.15) 

(2.  4.16) 

(2.  4.17) 

(2.  4.18) 

here ,  not only Gz(u + iv) is analytic and bounded in the upper half plane, but 
1 also G 2 ( u  + iv) 

f o r  G l ( u  + iv) in the lower half plane [there are situations, e. g. ,  the rational 

case, where G2 and G1 may be simply found by inspection of the zeros and 

poles of ( 4 3 .  

is analytic in the upper half plane; s imi la r  propert ies  hold 

Y 
In any case, the minimum mean-square error is given as 

a3 
- I f -  

-00 

(2 .  4. 20) 

It is c l ea r  that the preceding filtering problem resembles  our  interpo- 

lation problem, except for  the fact that the process  y(t) of ,equation (2. 4. 2) is 

‘KG2 is a. e. unique up t o  a complex constant of modulus unity. 
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an improper  random process .  However, there  are  cases where the general-  
.,, .#, ,,. .,. .I. e,- 

ized function R (T )  exists and has a generalized Four i e r  t ransform $ (a) 
.L .b Y Y _.. _.. 
. I  

which is non-negative; furthermore,  under some conditions , the classical  

Pa r seva l  relation (inLz) may be extended to hold in a generalized Four ie r  

theory. 

resu l t s  and give some examples. 

In view of these facts, we shall heuristically extend the preceding 

2. 4. 3 Optimum interpolation 

Let u s  consider equations (2 .  4. 2), e . and, fo r  simplicity, assume that: 

i) x(t) is weakly stationary, continuous in the mean and has  a spectral  

density qb (a). 
X 

ii) the "time-jitter process"  e(t) is such that, for  u # v, e(u) and e(v) 

a r e  independent random variables identically distributed with character is t ic  

function 

(2.  4. 21) -iwe(u) 
C(iw) = Ere I .  

iii) The processes  { t  } , {a } , e(t), x(t) a r e  mutually independent n n 
and 

Era,] = 0 

, n = m  i 0 , n # m  

2 a 
E[anaml = 

:# R ( T) denotes the extended correlation function associated with y(t) .  

:::::: For instance, see ref L. 4, L. 2, G. 1, E2. 

Y 

(2.  4. 22) 

(2. 4. 23) 

(2. 4. 24) 

. 
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we obtain 

Furthermore,  f r o m  

R (TI = E { R ~ [ T  + e(t  + 7) - e(t)J} 
X1 

and in view of co 

we can write 

R (T) = - 1 1 $ 2 ~ )  eiuT du 
X 21T 

-00 

-a3 

co 

-00 

J f # o  

( 2. 4.. 25) 

(2 .  4. 26) 

(2.  4. 27) 

(2.  4. 28) 

(2. 4. 29)  

(2 .  4. 30) 

[Observe that, in general, x1 (t)  is not continuous in the mean. 

Let 

and 

00 

r ( T )  = - 2T 1 dX( u) IC( iu) 12 eiuT du (2.  4. 31) 
-co 

00 

a' = Rx(0) - r (0)  2iT dX(u)[1- I G ( i ~ ) ) ~ ] d u  . (2. 4. 3 2) 

Then in view of the delta-function which appears in (2.  2. 28), equation (2.  4. 25) 

can be written 

R y ( ~ )  = P ( l + 0 2 ) a 2 6 ( T )  + r ( T )  R s ( r )  ( 2 .  4. 3 3 )  

o r  by using generalized Fourier  t ransforms 

(2.  4. 34) 

-co 
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o r  

8 , p  = P$,(W)C(iw) - 

Next, we shall i l lustrate with some examples. 

2. 4. 3.1 Nearly-periodic sampling with skips, t ime-j i t ter  and amplitude e r r o r s  

Referring to ( 2 .  2. 2 3 ) ,  the preceding equations give 

00 
~ J W )  = (---I 1 - q  2 C $,(w-nwo)Iy(inwO)C(io - in-) 1’ 

T nZ-00 

a3 

+ 1 - q  T \ 1  + cr2)Rx(0) -x (1 - SI2 {px(u)IC(iu)y(iw- iu)12du 

-M 

21T , w o =  - T 

and 

$ (4  = - - q rpx(o)c( iw) 

% a3 

XY T 

It is perhaps interesting to observe that in view of 

5 { $,( w - nw0)dw = {$x(W)dW <M 

n=-a3 wo -- -00 
2 

it follows f rom Beppo-Levi’s theorem that 

$ (w) < M a. e. 
Y 

and that furthermore $ (w) i s  local1 

values of w where the summation 

vanish. 

summable. Also notice that f o r  those 

$ ( W  - nuo) vanishes, $ (w) must also 
Y & 

n=-m X X 

~~ 

(2. 4. 3 5) 

(2. 4. 36) 

(2. 4. 37) 

(2. 4. 3 8 )  
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Case  I: Non-realizable interpolator 

F r o m  (2. 4.12), we obtain 

If we assume that the sampled process  x(t) is band-limited such that 

the preceding expression leads to 

-2 r $,(u) IC(iu)y(iw - iu) I'du 
21T I 

with an associated mean-square e r r o r  

(2.  4. 42) 

By letting q = 0 (no skips), u t  = 0 (no e r r o r s  in amplitude), the preceding r e -  

sul ts  agree with those in references B. 2 and B. 9. 

Let us apply ( 2 .  4. 42) to  a specific example: assume that the sampled 

process  x(t) is wide-sense Markov, i. e . ,  



and that 

- 7 2  - 

(2 .  4. 44) 

g = 0, C(iw) = 1, y(iw) = 1, crz = o (2 .  4. 45) 

( in  other  words, w e  have an ideal periodic sampling). In this  case, we have 

and in view of (Poisson summation, ref L. 4. , page 70)  

00 - inwT 00 

$ ( W  - nQ) = T Rx(nT) e x n=  -00 n = - m  

we obtain 
- 2aT 1 - ~ e - ~ ~ c o s  UT + e -- 2a 

-2aT a2 + WZ 
H(w) = 

1 - e  

(2 .  4. 46) 

(2.  4. 47) 

(2 .  4. 48) 

Then the interpolation function is 

9 (2. 4. 49) 

, otherwise l! 
it is c lear  that the interpolation function uses  only two samples:  the most  

recent  ones f rom the right and from the left [this resu l t  is not too surpr i s ing  

in  view of the Markovian property of x(t)]. 

- Case  11: Realizable interpolator 

Let u s  suppose that 

a ,  0 (2. 4. 50) 

(2.  4. 51) 
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(periodic sampling with skips). In view of 

and using (2. 4. 47), (2.  4. 37), (2.  4. 38), we obtain 

It may be seen that 9 (a) can be expressed as 
Y 

- iTw iTw 

-aT -iTw -aT iTw 
1 - pe l - q L u 2  1 - l e  - -  9 (4 = - 

Y T I - e  e 1 - e  e 

where p is taken to be the smaller  root of 

and where 
(Zs - 1) 

- 2aT 
a2 = l + e  

- .  

With 

1 + p' 

.'< .e. 
I, .,. -iwT 

-aT  -iwT Gl(o) = CY $$ 1 - pe 

1 - e  e 

(2 .  4. 52) 

( 2. 4. 53) 

(2.  4. 54) 

(2. 4-55) 

(2. 4. 56) 

(2. 4. 57) 

( 2 .  4. 58 
,.# , 

:% This equation has two r ea l  positive roots pl and p2 such that pl p2 '= 1. 

:*:% Observe that GI / Lz a s  in the classical  theory. 
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we obtain f rom (2. 4.15) 

00 00 -aT iTu itu 
du} dt 2a 1 - e  -aT e -iTo Ie- iwT {A 1 1 - e  e 

H(u) = - iTu u2 +a2  , CY2 

e 

- i T w  -00 1 - pe 1 - pe 0 

an expression which can be evaluated by residue techniques. 

gives 

The term { } 

- 2 a T  1 1 - e  
2a -aT 1 - be 

- at e - 

and consequently 

1 -2aT - e-aTe - i T w  
1 - e  

( ~ ~ ( 1  - pe 
-aT a + i w  1 - pe - ioT H(o) = 

or  as an interpolation function 

-2aT co 
p" k(t  + nT) 1 - e  

h(t) = 
a2(1 - pe -aT) n=o 

(2 .  4. 59) 

(2 .  4. 60) 

-at e O < t S T  
(2 .  4. 61) 

0 , otherwise i 
where 

k(t) = 

the associated minimum mean-square e r r o r  is calculated f r o m  (2.  4. 20) and 

we find 

In the absence of skips, the preceding resu l t s  become ( p  = 0) 
1 - e  -aT e -iTw 

a f io H(w) = 

(2 .  4. 62) 

(2 .  4. 63) 
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. 

. 

b h(t) = 
, O < t r  T 

- 2aT 1 - e  € 2  = 1 - 
2aT 

(2.  4. 64) 
, otherwise 

(2 .  4, 65) 

In concluding, it is interesting to note that 

i) in the absence of skips, the interpolation functions uses  only one 

sample (the most  recent one) 

ii) in the presence of skips, the interpolation function uses  the whole 

infinite set of past  data (the Markovian s t ructure  of x(t)  has been lost) .  

2. 4. 3. 2 Poisson sampling with time-jitter and amplitude e r r o r s  - 

Referring to (2.  2. 36) , (2 .4 .  34), (2 .  4. 36), we obtain 

Cas  e I: Non- realizable interpolator 

In view of (2 .  4.12) , we have 

and, a s  minimum mean-square emor, we find 

00 
(1 + u 2 ) R  (0 )  

€ 2  = 2lT X S d w .  
-03 

In o rde r  to illustrate, suppose that 

(2.  4. 66) 

( 2 .  4. 67) 

(2.  4. 68) 

(2.  4. 69) 

(2. 4. 7 0 )  
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(absence of time-jitter and amplitude e r r o r s ) ;  the preceding equations lead to  

2a 
bZ + a2 H(w) = 

h(t) = ; 
(2 .  4. 71) 

(2.  4. 7 2) 

(2 .  4. 73) a 
b 

and E 2  = - 

where 
(2.  4. 74) 

Case  11: Realizable interpolation -- 

We make the same assumptions as in ( 2 .  4. 70);  it follows f rom (2. 4. 66), 

(2 .  4. 67) that 

where 

b = + da2 + 2ap . 

With 
w - ib  
w - ia G,(w) = "@ J 

equation ( 2 .  4.15) gives 

M M i tu  

( U b ) ( u  - ia) du) dt w - ia S e - i w t  { &  J' 
0 -03 

e 
H(w) = 2a - 

w - Ib 

and because of 
-at  e { I =  Z b  ' 

(2. 4. 7 5) 

(2. 4. 76) 

(2. 4. 77) 
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we obtain 

2a 1 
H(w) = -  - a + b  b + i w  

-bt e 

with minimum mean-square e r r o r  

, t >  0 

> t  0 

(2. 4. 7 8) 

(2. 4. 79) 

(2. 4. 80)  

It is interesting to  notice that the optimum interpolator is a simple f i r s t -order  

system. 



C H A P T E R  I11 

Step-wise P rocesses  

- Summary 

The random telegraph wave and the output of a zero-order  hold in a 

sampled-data control system constitute famil iar  examples of step-wise pro-  

ces ses  s 

In this chapter, we shall  define various models of stationary step-wise 

processes  and we shall investigate their  second-order s ta t is t ics  a 

and frequency domain s ta t is t ics  will be considered, with their  respective merits. 

Time-domain 

The resul ts  obtained a r e  particularly simple in the case of independent 

sampling intervals.  For illustration, various examples a r e  given. 

3 .1  The chopped random process  - 

3.1.1 Definition 

The chopped random process  y(t)  is a continuous parameter  random 

process  defined a s  

t < t s t  n n+l (3.1.1) 

where x(t)  is a continuous parameter  stationary random process  which is 

independent of the stationary point process  { tn> 

Following this definition, y(t) is a stationary random process .  This 

process  can be viewed as the output of a zero-order  hold, preceded by a 

sampler  which samples ( o r  chops") the process  x(t) ,  a t  the random instants 

t .  n 

l! 

For simplicity, we shall  assume that the process  x(t) is continuous in 

the mean and has  a spectral  density denoted by q5 (a). A s  for  the point process  

{tn), we shall suppose that equation (1.3.31) is satisfied, that is 
X 
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3.1. 2 Second-order statistics 

and 

where 

First, we observe that 

E[Y(t)I = E m 1  

(3. 1. 2) 

( 3 .  1. 3) 

( 3 .  1. 4) 

R (t) = E[x(t + T) x(t)] . 
X 

Denoting by t the instant of the most recent occurrence p r i m :  toi the 
-1 

fixed instant t and using the notations of Chapter I, we can w r i t e  

that is 

= E[R ( T  + L  ) I  
X -1 

(3.1. 5) 

where g l (u )  denotes the density function for L 

relation, equation (3.1. 5) can also be written 

(or  for L1). Using Parseva l ' s  
-1 

R (T)  = - 1 ~ $ x ( w ) g ~ (  4 w ) e  iwT dw 
2Tr 

-00 
XY 

s o  that 

(3.1. 6) 

(3.1.7) 

thus giving the c ross -spec t ra l  density between x(t) and y(t). 

way, we obtain 

:::This somewhat res t r ic t ive assumption is convenient: by virtue of theorem 4, 

In an analogous 
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n 

(3.1. 8) 

(3.1. 9) 

and 

Next, l e t  us evaluate the ;correlation function 

where without loss  of generality, we assume the argument T positive. 

by t;, the instant of the most  recent occurrence p r io r  to  the instant t - T, we 

can write 

Denoting 

Ry( 4 = E[x(t- l )  x ( t l l ) l  

= E[R ( t  - t '  ) I  
-1 x -1 

00 
P 

(3.  1. 11) 
0- 

where 
F(u, T) = P[t - tl 5 U]  

-1 -1 

This distribution function is determined a s  follows: letting 

and observing that 

P[t - t l  5 U ) f i L  >T) ]  p(0, 7) 
-1 -1 - 1  

(3 .  1. 14) 

(3.  1. 15) 

we then obtain 
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. 

( 3 .  1.16) 

thus defining F(u, T )  in t e r m s  of the s ta t is t ics  of the point process.  

interesting to notice f rom (3.1.12), that 

It is 

thus showing that +(IT, T) is continuous at the origin [u = T = 01. 

The correlation function for  the  process  y(t) is expressed as 
00 
I- 

( 3 .  1.17) 

where 

we may observe that 

hence 

and so y(t) is continuous in the mean. 

3.1. 3 Some properties of +(a, T) 

(3 .  .I: 19) 

(3.1. 20) 

it follows f r o m  (3.1.15) and f rom Fubini's derivation theorem (ref R. 2) that 

00 

+'(u, T) = +Ju, T) a. e. 
n=i  

(3. 1. 21) 

If the + '  (u, T) a r e  absolutely continuous in every closed interval, then the n 
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.b 

s a m e  property holds.” for +(u, T). 

ii) If the point process  {t } satisfies assumption (2 .1 .  23), namely n 

tn+i n - t  > e > o  (3. 1. 22) 

then the summation (3.1.15) is finite and we can write 

N(u, T) 

n=i  
+(u, 7) = $ (J, 7) 

where 

, k = l , 2 ,  . . .  

(3. 1. 23) 

(3.  1. 24) 

iii) Suppose that the point process  is such that for some finite positive 

constant L and for all  n 

- t  < L < c o  n+i n t (3 .  1. 25) 

with probability one [in other words, the t ime spacing between consecutive 

occurrences can not exceed L]. In this case, we may notice that 

$(u, T) = 1, f o r  T > L, cr > T + L 

$(u, T) = G,(T), for  T 5 L, u > T + L 
( 3.1, 26) 

iv) An interesting case is provided by assuming that L , x . . x 
-1 -1’ -n 

-n [x = L - L ] are independent random variables such that all the x -n -(n+i) -n 
are identically distributed according to density functions and denote 

n 
1 f (u) = lim P [ v <  x m k  5 u + h] * - 
h h+O k= i  

n (3. 1. 27) 

In this case, the $n(u, T) a r e  absolutely continuous and the +A(u, T) can 

:::This may be seen by combining Beppo-Levi’s and Fubini’s derivation theorem. 
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. 

. can be evaluated as follows: f rom the elementary probability 

P[ (u< L - L s a + d u ) A ( x < L  s x + d x ) n ( L  > T)] 
- 2  -1 - 1  - 2  

we obtain s: (3. 1. 28) $ l ( m ,  7) = f i  (U) gl(X) U(U - T + x)dx . 
0 

I 

Similarly, f rom 

- L Scr +dda)n(x<L s x + d x ) n  - (n+i) -1 -1 
P[(u < L 

> f ) !  -(n+l) 
( V + X  < L 5 v + dv + x ) n ( L  T ) ~ ( L  -n -n 

n- 1 

k = i  
= P[(x < L 5 x + dx)n(v < X-k 5 v + d v ) n  

-1 

= gl(X) dx fn - l ( ~ ) d v f l ( ~  . - v)dr  U(T - x - V) U(u - T + X) 

we a r r ive  at  

By vir tue of (3.1. 21), w e  w r i t e  

SU denotes the step-function defined by (2.1. 33). 
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and 

(3. 1. 31) 

3.1. 4 Examples 

3.1. 4.1  Periodic sampling 

This case is familiar (ref R. 1) and the s ta t is t ics  of y(t) a r e  usually 

approached in the frequency domain (spectral  density, etc. ). 

a time domain approach leads to simple results.  

A s  will be seen, 

Time -domain statist ics 

The periodic point process  is symmetr ic  and has  been defined in 

section 1. 4.1. 

tinuous and we find 

In the present  case,  the function +(uJ T) is not absolutely con- 

u[U - (n+ l )T]  u[-~T] + - ( n + l ) T  - T T - n T  
T T F(u,  T) = (3. 1. 32) 

where 
T n = max {klkS -} k = 0,1, 2 , .  * 
T 

F r o m  equations (3. 1. 5) (3.1. 8) and (3.1.  ll), we obtain 
T 

T 
1 
T {R ( T  -u )du  R (T) = -  

X YX 
0 

(3.1. 33) 

(3.1. 34) 

, n T  5 T 5 (n  + l)T (3.1. 3 5 )  

This last expression leads to a simple graphical construction of R (T) 

[see Fig. 3.11. 
Y 
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Figure 3.1. Graphical construction of R ( T). 
Y 
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Frequency domain s ta t is t ics  

From equations (3.1. 7) and ( 3 , l .  9), we obtain 

A s  f o r  the spectral density $ (4, it  is obtained as follows: letting 
Y 

R"'(s) = 1 R (t)e-Stdt 
Y 

0 
Y 

and using (3.1.  3 5), we have 

(n+l) T 
t - n T  -st 00 

R [nT]- - R [ (n+ l )T] )e  dt ( n + l ) T - t  
X T x  R"(s) = 1 { 

Y n=o 
nT 

a3 - s n T f r  T - t t - st = C e  - T x  R [nT]+- T x  R [(n+l)T]}e dt 
0 

n=o 

-ST sT 00 - snT  2 R (nT)e  
e -1)(1 - e  ) 

Ts2 n= i  
-l)R (0) + 1 1 -ST 

=-Rx(0)  S +=(e  X 

we obtain 

or  in view of equation (2.  4. 47) 

WT sin2 oo 

(3. 1. 36) 

(3.1. 37) 

(3. 1. 38) 

(3.1. 39) 

a resu l t  which is expected (ref R. 1). 
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Illustration: If we take 

R x ( ~ )  = e -ah1 , a >  0 

that is 

the preceding resu l t s  lead to 

(n  + l ) T  - T .-anT+ T - n T  -a(n+l)T , n T  5 T 5 ( n  + l )T 
e R Y ( ~ )  = T T 

and 
2a i w T  

XY T io 
l e  - 1  

a2 + fl (w) = - .  

3.1. 4. 2 Poisson sampling time-domain statist ics 

F r o m  equation (3.1. 5), (3.1. 8) we obtain the cross-correlat ion functions 

ca 

.lr 

In o r d e r  to  determine R (i), we need first to evaluate +(u,  T) or  +'(u, T)~ ' .  

+Here, + is absolutely continuous. 
Y 

(3. 1. 40) 

( 3 .  1. 41) 
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and we shall  indicate two ways of calculation: 

i) Letting 

and observing that 

P [ (x<L 5.x + dx)n(u < t - t '  5 r + du)] 
-1 - 1  - 1  

= P [ ( x < L  S x + d x ) n ( u + x - ~ < L I  - 1  S u + d u + x - ~ ) ]  

( u  +da + X  - T] 

- 1  

S x +dx]P[u + x  - T <  L '  -1  -1 = P[k< L 
.I. 'L' 

= gl(x)dx gl(u - T + x)& 

T 
we obtain from (3.1.12) 

that is 

( 3 .  1. 42) 

ii) The same result  is obtaineti by evaluation of the infinite s e r i e s  
The function +I(U,T) is sketched in Fig. 3. 2. defined by equation ( 3 . 1 .  3 0 ) .  

F r o m  equation (3 .  1.17), we now obtaiil the auto-correlation function for  

y(t)  as T 

R (T)  = eVPTR (0) + + w - P T I R  x (cr)(e Pu- e-'u)& 
X 

0 Y 

( 3 .  1. 43) 

_-_I____- 

:::The Poisson point process  has no memory; L and L'  a r e  independent and 
-1 - 1  

identic ally distributed. 
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c 

A 

_.: 

Figure 3. 2. The function +'(u, T ) ,  for a Poisson point process.  
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Frequency - domain s ta t is t ics  

Using equations (3.1. 7) and (3-1. 9), we have 

The spectral  density 9 (w) can be evaluated f r o m  ( 3 .  1. 43); letting 
Y 

00 

R'::(s) = e R (T)dT Re(s)  > 0 s - S T  Y > y o  

we find that 

consequently 

where 

(3.  1. 44) 

(3. 1. 45) 

00 

PT[R (0) - R ( T ) ] ~ T =  const. 2 0 (3.1. 48) 
X X 

0 
9,' 

In other  words, the spectral  density is the same as the one obtained at the 

output of a f i r s t -order  system, with t ransfer  function - , with input 

x(t) + n(t), where n(t) is a white-noise with spectral  density 9 (w) and zero-  

mean, and x(t) and n(t) a r e  uncorrelated.  

P + s  

n 

Illustration: Taking 

R (T)  = e - ' I T !  , a >  0 
X 

[ e-aT we obtain for  P k a 
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, 

L 

and for P = a 

In the frequency domain, we obtain 

- P  2a q x y ( 4  - ~ /3 - i w  a2 + wz 

and 

3.1. 5 Frequency analysis . 
3.1. 5.1 The sDectral densitv u 

4. 

F o r  simplicity, let u s  assume"' that the LJJ ( u , ~ ) '  a r e  absolutely continuous n 
on [ o , ~ ) ;  it follows f rom (3.1.17) and (3.1.19) that 

:: Otherwise, a Fourier-Stielt jes theory would be necessary; however, i f  the 
LJJn(u; T )  have no singular component (which arises f rom the Lebesgue decompo- 
sition of a monotone function) and if the +'n(u, T )  and $J'(u, T) denote generalized 
derivatives, then equation (3.1. 49) and the following ones remain valid by 
using the concept of a generalized function and of a generalized Four ie r  theory 
( r e f  L.4, E. l ,  E. 2, L. 2, S.1, . . .  ). 

. 
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Using the Parseva l  relation, equation (3.1. 49) can be writ ten 

where 

(3.1. 50) 

In view of 00 

0 -00 0 

we observe that the i terated integral 
M 00 

-00 0 

is absolutely convergent; therefore,  the o rde r  of integrations may be in te r -  

changed':. As a result, f rom equation (3.1. 50), we obtain 

00 
, P  

R q s )  = ~ " ' ( 0 ,  s) R (0)  + A p,(u)+':k::(-iu, s)du , Re(s)  > 0 (3.1. 51) 
N X 21T 

where 
00 

R:':(s) = e STR (T)dT 
Y l -  0 Y 

and 00 00 

Finally, in v i ew of 
a3 

the spec t ra l  density p (0) is obtained f rom 
Y 

$ (a) = R"(i0) + R"( -io) . 
Y Y Y 

- 
:::Tonelli-Hobson's theorem (ref G. 2, page 3). 

(3. 1. 52) 

(3.1. 53) 

( 3 .  1. 54) 
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General remarks:  

The preceding expressions fo r  9 (a) a r e  formal  since R"(iu) and hence 
Y Y 

$ ( w )  might not exist in the usual function sense, but will have to be interpreted 

in a generalized function sense. 
Y 

In view of a possible evaluation of (3.1. 51) by residue methods, i t  is 

interesting to notice that, in the u-plane, the upper-half plane does not contain 

any poles of +I::::::( -iu, s) but only poles of 9 (u); in the lower half-plane, we find 
X 

a l l  the poles of +I:k:k(iu, s), in addition to poles 

Because of 
00 

ar is ing f rom 9 (u) .  
X 

5 1 ,  
0 

the i terated integral 
00 00 

is absolutely convergent; it then follows::: that 

where the double integral is absolutely convergent. 

gence theorem, it is easily seen that 

F r o m  Lebesgue's conver- 

00 

3.1. 5. 2 The case  of independent L sampling intervals 

We shall evaluate tj~~:k:::(-iu, s) and R':(S) under the assumption that 
Y 

L , x , . .  . x are independent random variables and that all  the x are 

identically distributed with density function f l  (a). 
- 1  -1 -n -n 

:FTonnelli-Hobson's theorem (ref G. 2) 
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In view of (3.1. 28), we have 

a3 T 

J 
0 0 

and observing that this i terated integral is absolutely convergent, we obtain, 

by interchanging the order  of integrations, that 

T a3 T T -X 

0 0 0 0 

T T T-X 

fl(cr)dcr dx ; 
J J J 
0 0 0 

a3 T a3 T 
then 

0 0 0 0 0 

In view of the fact that for  independent sampling intervals 

g l ( s )  = p 1 - f> l  ( s )  
a 

S 

where 

(3.1. 57) 

we obtain 

For  n > 1, f rom ( 3 . 1 .  29), we have 
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noticing that the i terated integrals 

T co T -X 

0 T - X  0 

T T - X  

0 0 T - X  

a r e  absolutely convergent, we may therefore  interchange the o rde r  of inte- 

grations and we obtain 

T T - X  

T T-X 7 - X  

0 0 0 

Observing that fo r  v 2 0 

co co 
iu( t+vj iuv -8, 

dt = e fT(-iu) 

and that 

iuu sf n-1 ( v ) l f l ( u  - v)e 
0 0 0 0 

du dv = leiuu{fl(u - v)fn-l(v)dvdu- 

0 0 

w e  can write 
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T T - X  

Then 

and using c 

s s iuv 

.L 1 -I, 

+n"*(-iuJ T) = frt- iu) gl(x)  e fn- l (v)dvdx 
0 0 

T T-X 00 

- sgl(x) le iuu Sf,(u - v)f n-1 (v)dv do- dx . 
0 0 0 

00 T T-X 

1 - S T  {gl(x){eiuv f (v) dv dx d-r + (-iu,  s) = f 'i(-iu) e n- 1 

0 0 0 

1 ::: :$ 

00 T T - X  00 

- se -STsg l (x ) Ie iuu  {fl(u -I v)fn-l(v)dv do- dx d r  
0 0 0 0 

nvolution properties,  we find 

, Re(s) > 0 a (3.1. 59) 

Sumrnation of the infinite s e r i e s  (3.1.  55) gives 

Finally, in view of 

and 

we obtain f rom equation 3.1. 51) that 
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Remarks: 

In the preceding calculations, it was assumed that f l ( m )  is an ordinary 

density function. 

can be extended to  include c a s e s  where f l ( u )  is a generalized density function 

which contains 6-functions. Also,  we may observe that 

one pole u = -is i f  x 

function and that it has an infinite number of poles i f  x 

tion (ref L. 5, L. 6). 

In a generalized Laplace t ransform theory, these calculations 

1 has  only 

has  a non-zero continuous component in i t s  distribution 

has  a latt ice distribu- 

1 - f f (s  - iu) 

-n 

-n 

Examples: 

i) If we take R (T) = 1, or  a s  generalized spectral  density $J ( u )  = 2~r6(u), 
X X 

we obtain 

as it should be. 

ii) If x(t) is such that 

Rx(-r) = e -ab1 a >  0 

o r  

evaluation of (3.1. 61) by residue methods leads to 

For  illustration, if we le t  

o r  

-ST p = -  1 (periodic sampling) 
::: 

T f , ( s )  = e 

I (Poisson sampling) P 
P + s  

d, 

f;(s) = - 

(3.1. 62) 

(3.1. 63) 
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the resu l t s  obtained agree  with sections 3.  1. 4.1 and 3. 1. 4. 2. 

iii) Finally, i f  

R (T)  = C O S  W O T  
X 

(3.  1. 64) 

3.1. 5. 3 An alternative expression for  the spectrum 

Here, we shall suppose that we  can find two positive numbers r and v 

such that 

or, what is equivalent, that 

00 

(3 .  1. 66) 

(3 .  1. 67) 
J J 
0 0 

Before going on, we may f i r s t  note that (3.1. 66) or (3.1. 67) a r e  always 

Let us  mention that assumption 3.1. 66  (or 3.1. 67)  [with t rue  with r = 0, v > 0. 

r > 0, v &. 01 is not unduly restrictive: in fact, 
0 

i) If the point process  {t,} is such that equation (3.1. 25) holds with 

probability one [the sampling intervals are bounded from above], then equqtion 

(3.1. 67) can be written 

00 T+L co 

J J 
0 0 

J 
0 

It then follows that condition (3.1. 67) will be fulfilled i f  

numbers r and v such that 

dT . 

ve take an; positi 
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O < ~ < V < C O .  (3. 1. 68) 

ii) If the sampling intervals a r e  independent random variables and if  

there  exists a positive number X such that:: 

(3,  1. 69) 

then it can be seen by calculations s imi la r  to the ones of section 3.1. 5, 2 that 

condition (3.1.66) is fulfilled by taking any positive numbers r and v such that 

O < r S h ,  r < v  e (3.1. 70)  

F r o m  equation (3.1. 491, we obtain 

00 00 

and, by virtue of 

0 0 
J 
0 

we may interchange 

where 

Letting 
:!: 

R ' (p)  
X 

p = r  

the o rde r  of integrations, so that 

(a)+':k(a, s )dr  , Re(s) > 0 
0 

00 

co 

= S R '  (a) e-pu da 
X 

0 

R + iu, r > r 

(3. 1. 71) 

(3. 1. 72) 

::For the Poisson point process,  A < p. 
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r S O  
R 
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denotes the abscissa of absolute convergence for  (3.1.72) and 

00 00 

J J 
0 0 

p = r + i u  , s = v + i o ,  

We write, in view of the Parseval  relation that 

00 00 

and therefore 
00 

::: .)r 

R ( S) = p'"( 0, s ) R  (0)  + SR"( p)Jl I::::::( -p, s) du Y X 21T X 

(3. 1. 73) 

(3. 1. 74) 

-00 

p = r + i u ,  s = v + i o  . (3 .  1. 7 5) 

Remark: 

The preceding expression resembles  equation (3.1.  51). However, it 

is interesting to notice a certain advantage of equation (3.1. 7 5): 

the left half plane Re(p) < r does not contain any poles of +I:k:k( -p, s); in the 

right half plane Re(p) > r, we do not find any poles of R*"(p). This r emark  will 

be useful whenever the integral of (3.1. 7 5) can be evaluated by residue methods. 

in the p-plane, 

.L 

The case  of indeDendent s a m d i n e  intervals 

A calculation s imi la r  to the one performed in section (3.1. 5. 2) leads to 



c 
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where 

p = r + i u ,  s = v + i w  

O < r < A ,  r < v  

Note: A has  been defined in (3.1. 69). 

- Examples: 

i) Poisson sampling 

With equation ( 3  1. 7 6) and 

P f J s )  = - 
.b -0. 

p + s .  ' 

we a r r ive  at 
00 

-00 

Evaluation by residues gives 

which is the same as  (3.1. 46). 

ii) Periodic sampling with skips 

Here, we have 

and 

From (3.1. 76) ,  we are led to 

(3.1.77) 

(3.1. 7 8 )  



- 102 - 

R: (p)  

( P - S P  -pT - q) ( l  - e 

.L 

1 - g;'(s) Rx(0) + (1 - q)gT(s) - e-sTr -___ R''.(s) = du 
.L 

Y S 2 T S  , 
-co ( e  

p = r + i u  , s = v + i o  

o < r < A  , r < v  

where 

-A T 
e = 9  ( 3 .  1. 79) 

The preceding expression can be evaluated by residue methods; f i rs t ,  we may 

notice the strong convergence to  zero of the integrand a s  Ip I + cy, along any ray  

which makes an angle < - with the real axis; then, we observe that in the right 

half-plane Re(p) > r, we have a double infinity of poles defined as 

T 

2 

p = A + n i w o  

p = s + n i w o  

ZIT 

T where wo = - and n = 0, 21, 2 2 ,  . . . . Performing this residue evaluation and 

using equation (3.1. 78),' we finally a r r ive  at  

.Ir 

00 .,, .,, 

S X X 

.Ir .I. 

Rx(0) +g r ( s )g ; ( - s ){c  R*'*(s+inwo) - R'"(A+inwo)} (3.  1. 80) 
$( s )  = 1 - g;( s) 

n=-co n=-cy, Y 

o r  in t e r m s  of spectral  density 

and because of (3.1.  79), equation (3 .  1. 81) can be written as 

(3.  1. 81) 
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c 

00 

h n=1 

Illustration: i f  x(t) is such that 

we obtain from (3.1. 82) that 

Remark: 

In the absence of skips ( q  = 0), equation (3.1.  82) gives 

as it should be. 

3. 2 The chomed and alternated random Drocess 

'(3.  1. 82) 

3 .  2. 1 Definition 

The chopped and alternated random process  y(t) is a continuous pa ra -  

me te r  process  defined as 

y(t) = ( - l )n+jx( t  n n  ), t < t stn+l (3. 2.1) 

where j is a random variable taking on the values zero o r  one with equal proba- 

bility (independently of x(t) and {tn}) and where x(t), {t,} are defined as in 
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section 3.1.1. 

3. 2. 2 Second-order s ta t is t ics  

First, we may note that 

and 

Using the notations of section (3.1. 2) and definition (1. 2. ll), and 

observing that 

I E[y(t)y(t - T) / A  ( t  - T, T ) ]  = (-l)n E[x( t - )x( t l l )  /An( t  - 7, T)1 n 

we obtain a s  autocorrelation function 

a3 
a3 n 

where the J, (b ,  T) are  defined by equation (3.1.13). n 

Example: Periodic sampling 

As in section 3.1..4. 1, we ar r ive  at 

, n T  5 T S (n  + l ) T  

( 3 .  2. 2) 

( 3 .  2.3) 

(3. 2. 4) 

( 3 .  3 .  5) 

(3.  2. 6) 

T , n = max { k l k  5 -}, k = 0,1, 2, . .  . T 

For the spectral  density, we obtain 

(3.  2. 7)  
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From equation ( 3 .  2. 6)> we obtain a simple graphical construction of R (7) 

[see Fig. 3 .  31. 
Y 

3. 2. 3 Frequency analysis 

and 

where 

A s  analogues of equations (3.1. 51) and (3.1. 7 5 )  

1 
R"'(s) = ~ " ' ( 0 ,  s)Rx( 0) + 

we obtain 

Sc , (u)  +z:F(-iu, s)du , ReBs) > 0 

co 
.lr .L 

-uo 
Y 

co 
1 .e, .or 

R"'( s) = p'"( 0, s)Rx(0)  + lR '"(p)  +:"'( -p, s)du Y X 
-co 

p = r + i u ,  s = v + i w  , 

F o r  the case  of independent sampling intervals, we have 

where .b 

1 - f;'(s) 4- 

g;'(s) = P 

p = r + iu, 

O < r < X ,  r < v  

s = v+ i w  

- Examples: 

i) Poisson - sampling 

Evaluation of expression ( 3 ,  2.13) by residues leads to 

( 3 .  2. 8 )  

( 3 . 2 .  9) 

( 3 .  2.10) 

(3. 2.131 

( 3 .  2. 14) 
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Figure  3. 3. Graphics1 construction o f  R ( T ) .  
Y 

I 
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we obtain 

o r  

>:c 1 
Rx(s) = - 

S 

1 4. -,. 
R ( s )  = -- Y 2p + s 

a s  it should be, in view of the fact that y(t) ;'is the random telegraph wave. 

ii) Binary process  

If x(t) = 1, then fit) i s  a binary process  taking on the values of 

- +l. .With 
R (T) 

X 

o r  

equation ( 3 .  2.11. ) gives 

1 

3 . 3  The random maneuver Drocess 

3 .  3 .  1 Definition 

( 3 .  2.15) 

The random maneuver process y(t) is the continuous pa rame te r  random 

process  defined a s  

(3,3.1) 

where {a } denotes a stationary random process  which is independent of the 

stationary point process  {t }. 
n 

n 
This process  could describe the random maneuvers of a target  in space, 

thus the designation. 
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3. 3. 2 Second-order statist ics 

we have 
ECY(t)l = 

In view of 

it follows that 
00 

(3 .3 .2 )  

(3. 3. 3) 

(3. 3. 4) 

(3.3. 5) 

9 where the p(n, T) a re  defined by equations (1. 3.1) and (1. 3. 2). Also 

a3 

Rs(s) = C p(n)p"(n, s) , Re(s) > 0 
n=o Y 

Example: - 
Poisson sampling 

From (1. 3. 97) and (1. 4. 6) ,  we obtain 

and therefore 

F o r  the random telegraph wave, we choose 

p(n) = 

1 and we find 
R::((S) = 
Y 2 p  + s 

as it should be. 

(3. 3. 6) 

( 3 .  3.7) 
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Appendix A 

Higher-order statist ics for the impulse process  s ( t )  = cy 6(t - t ) c o n  n n= - 

Similarly to section 2 .  2 . ,  w e  can w r i t e  

1 + d ) n  

for  T~ > 0, T~ > 0 

where 

(A.1, ) 

and 

L z 0 .  
0 

In the case  of independent intervals, and af ter  studying in detail the cases  

d,  IT^ I 5 d,  IT^ + T~ I 5 d, . . a e t c . ,  we obtain, using some heurist ics,  that 1 ~ ~ 1  

for Ti 2 o,, 7 2  ? 0- 

and where f (u) is defined by equation (2.1,30. ) .  n 

( A . 3 .  ) 
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In particular, if 

CY = 1  n 

the preceding expression can be writ ten 

(A.4. ) 

The preceding resu l t s  can be generalized to include higher-orders; for  

example, as  in ( A . 5 .  ) , we also have 

for T~ 2 0-, . . . T 2 0- k- 1 

Illustration: Poisson point process  

In this case, equation (A.6.  ) gives the very simple expression 

(A.6. ) 

(A.7. ) 

This resu l t  is useful a s  a means of obtaining higher order  s ta t is t ics  for  the 

to secondary process 

y( t )  = n=-w w - t  n 1 . (A.8. ) 

F r o m  

and using equation ( A . 7 .  ) ,  we obtain a s  an 
00 1 

Ld J 
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Appendix 

0 

. 

An intuitive intrepretation fo r  the distribution functions F ( x ) .  
n 

Let u s  consider a stationary point process  such that 

A s  in (1.2.14. ) ,  (1.2.15), we can wri te  

n- 1 

d x > 0 ,  x > O  

and in view of the preceding assumptions, we obtain 

Comparison with equations (1.3.36. ) ,  (1.3.37. ) shows that 

1 Ao(t, x )  

[EI (t +x, dx) 1 - F l ( x )  = l im 
dx+O 

and 

F ( x ) - F  (xf  = lim n- 1 n dx+ 0 

In order  to interpret  

#.4. ) 

@.5.) 

the right-hand s ides  of (B.4.  ) ,  (B.5. ) ,  we shall  

introduce the notion of a conditional description of a stationary point process:  

l e t  u s  consider an enumerable sequence of events which constitute a stationary 

point process; suppose we a r e  given that one or more  events occur at the 

- lll- 
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instant t = t - under these conditions [and a s  in  section 1.1.1. ] , w e  define the 

random intervals 
0’ 

and say that the random process  ( X  (t ) } 
of the stationary point process .  

provides a conditional description n o  

Discussion. -- 

W e  would like to point out that the preceding concept [conditional description] 

in ambiguous and arbi t rary:  indeed, what is actually 

Using definitions (1.2.1. ) ,  (1.2.11. ) ,  we can write 

w e  have therefore 
0 

P[ Xo(to) > T] = 0 . 

* 
Yet, one can give a sensible meaning to (B.7. ) i )  by limiting procedures: 

one could define the value of (8 .7 .  ) a s  

P[ X (t ) > T] = l im 
h+O 

(B.8. ) I 0 0  

or 

(B.9. ) 

a 

(B.7. ) 

* This is the usual procedure. 
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and so  on. Unfortunately, all  these l imits wil l  be, in general, different: which 

one, i f  any, is the right one?  

ii) by sampling procedures: 

Suppose we a r e  given a sample of the stationary point process.  Imagine 

yourself measuring the t ime intervals between consecutive occurrences,  thus 

obtaining an empirical  [ o r  time-averaging"] distribution function P[ X 5 x] , 

where X denotes the t ime interval between any two consecutive occurrences.  

Then the value of (B.7. ) could be defined a s  

1 1  

0 

0 

(B.10:. ) 

How do we reconcile these different views ? This seems  very difficult and 

perhaps impossible 

However, there a r e  some known stationary point processes  [for instance, the 

periodic point process  where X = TI for  which the different values obtained 
0 

f rom (B.8. ) ,  (B.9. ) ,  (B.lO. ) all agree, thus giving a somewhat legitimate meaning 

to  X ( t  ) .  In such a case, it  would follow from (B.lO. ) ,  B 8. ) ,  (B.4. ) that 
0 0  

F l ( x )  = P[ X 0 5 X ]  (B.11. ) 

thus providing a possible interpretation for  Fl (x) . 
view of (1.3.61. ) ,  we have 

Moreover, notice that in 

1 L B =  
E rxO1 

(B.12. ) 

The preceding discussion can be repeated for  all the X ( t  ) and s imilar ly  n o  
it may be seen that 

F (x) = P[ X +XI+.  a .  +Xn-l 2x1 (B.13. ) 

+Xn-l denotes the t ime interval between any occurrence and 

n 0 

where X +Xl +. 
the n following one. 

0 
th 
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Glossary of Principal Symbols 

The symbols l isted below a r e  those frequently used throughout this dis- 
sertation. 
are not included. 

Symbols defined and used incidentally in  the derivation of formulae 

n occurrences in 

the interval ( t ,  t + T] 
1 Y T > o  A (t, T) = n 

a = Amplitude e r r o r  in sampling 
n 

- iwenj 
C(iw) = E[e 

E[ ] = Stands fo r  statist ical  expectation 

at  least  n occurrences 

in the interval et, t + T]  

1 a T > O  En(tJ T) = 

e = Time-jitter e r r o r  before sampling 

F(v,T) = Defined by (3.1.16) 

n 

Fn(x) 

fn(x) + dx 

= Defined by (1. 3. 36), (1. 3 .  37) 
dF,(  x) 

a. e. 

a3 

%(s) = l e  - sx  dFn(x) 

0-  

[In the case of independent intervals, we have 

f:'(s) n = {f:(s)}n = {E[e-SXn])n 1 

0.- 

-SL 
= E[e n] 
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c 

0 
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# . 

= Transfer  function f o r  the optimum l inear  interpolator 

= Interpolation function 

= Passage t ime fo r  the n forward occurrence 

= Time elapsed since the n backward occurrence 

= Random number of occurrences in the interval (t,  t + T ]  

- Probability measure  

= P[N(t, T) = n] 

th 

th 

= The probability of skipping an occurrence 

= Generalized correlation function for s( t) 

Correlation function for x( t) 

= The impulse process,  i. e. , s( t )  = CY 6(t - tn) n n=-w 

= Time interval for  the periodical point process  

= L  - L  n+i n 

= Modulating factors  in the impulse process  

= Average number of occurrences per  unit t ime 

= Time-j i t ter  e r r o r  after sampling 

= Generalized spectral  density for  the impulse process  

= Spectral density for x( t) [possibly generalized] 
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+A(u, T )  = Defined by ( 3 . 1 .  20) 

-iu "1 y(iw) = E[e 

+(m, T )  = Defined by ( 3 ,  1.12) 

21f 
T 

- -  Wg 

i 

t 
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. .  8 March 1965 
\ A r e a  Code  617 

. .  
862-5500 

Miss Winnie M. Morgan 
Technical Reports Office 
National Aeronautics and Space Administration 
Washington, D. C. 20546 

Re: SC -NsG-2/23-05-00 1 

Dear Miss Morgan: 

I have received your letter of March 2, 1965 concerning the 
Stationary Point Processes publication of my Technical Report, 

and Their Application to Random Sampling of Stochastic Processes. 
There are two minor changes I would like to make. 

1) I wish to eliminate Appendix A, both in the Table of 
Contents and also on pages 109-110. Appendix By 
pages 111-113 will therefore become Appendix A, thus 
(B. 1) will become (A. l), etc. . . . 
Also, Eq. (2.4.49) page 72 should be 2) 

-altl alt l  e-2aT 
, O <  It1 S T  e - e  

-2aT 
1 - e  

h(t) = 

0 , otherwise 

I wish to thank the National Aeronautics and Space Administration 
for publishing my report and I shall be glad to be of further help if it 
is needed. 

Sincerely yours, 

OA ZL: smm \ D r  . 0. A.  Z . Leneman 


